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Abstract. This work investigates whether population vector coding
could be a principle mechanism for sensorimotor transformations. This
paper presents a formal demonstration of how population vector cod-
ing can proceed arbitrary 3-dimensional rotations and translations. The
model suggests that population coding could be a possible mechanism
for frames of reference transformations across multiple sensori-motor sys-
tems.

1 Introduction
When performing visually-guided movements, the brain faces the task of trans-
ferring information across different frames of reference. Visual information
gathered in a retina-based frame of reference (FR) must be transferred first in
head-centered FR, then in body-centered FR, and finally in hand-centered FR.
In this paper, we investigate how population vector coding can be used as a
principle mechanism to accomplish FR transformations.

Population vector coding is a computational paradigm shared by several
areas of the nervous system, including proprioceptive receptors, such as muscle
spindles [5], the motor cortex [10], and parts of the sensorimotor pathway, such
as the posterior parietal cortex [9]. Population vector coding appears, thus, to
be a common principle of brain organization, through which different neural
populations interact and share information in the purpose of accomplishing
tasks, by integrating multimodal informations for distributed control across
the whole body.

We present a formal demonstration of how population vector coding can
proceed arbitrary 3-dimensional (3D) rotations and translations. Other works
[1, 2, 6] investigating FR transformations using population vector coding, con-
sidered implicitly that some neurons produced a multiplicative response of their
inputs. In contrast, our approach derives the multiplicative property of the
population output from the concurrent activity of a population of integrative
neurons. Integrative properties of neurons are in line with a biological account
of neural response.
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2 Population Vector Coding
Each neuron participating in the population vector code is characterized by
three major properties: 1) a preferred direction (PD), i.e. the direction for
which its firing rate is maximal, 2) a cosine tuning curve [10], i.e. the neural
activity is modulated proportionally to the dot product between the direction
coded by the population and its preferred direction; 3) gain modulation [3], i.e.
the neural activity can be modulated multiplicatively by a constant external
input. Gain modulation and cosine tuning curve result from lateral inhibitory
and excitatory connections within the population. The population’s dynamics
is characterised by in attractor networks [7, 11].

-90 0 90

0

0.5

0°

90°

Preferred direction: θ(r)  [deg.]

Population Ω

ur

f(ur)

Population Vector

Coding Direction

Figure 1: Population vector
(top right), and neural activ-
ity of a 2 dimensional popu-
lation, where units are sorted
by their preferred direction �r =
(cos(θ), sin(θ)).

Let Ω be a continuous population of neu-
rons, where each unit is referred to by its pre-
ferred direction �r, uniformly distributed along
a two or three dimensional subspace defined by
ΓN = {�r ∈ R

N | ‖�r‖ = 1}, N = {2, 3}, respec-
tively. Let u�r be the membrane potential of the
neuron with PD �r, and f(u�r) its firing activity.
f is a non-linear function equals to f(x) = [x]+,
i.e. it returns the positive part of the input.
Each neuron fires preferentially for its PD. The
neuron’s potential is modeled by

u�r = α + β (�r · �rv), (1)

where α is the baseline firing rate and β the
cosine amplitude. By construction, for α = 0,
the population as a whole fires maximally for
the direction represented by the vector �rv with an amplitude proportional to β,
(see fig. 1). In other words, the population can be tuned to encode an arbitrary
vector �v = βv�rv

1 by setting the activity of all neurons in the population to
u�r = βv (�r · �rv).

3 Attractor Network and Gain Modulation
Consider now a fully connected population ΩR, whose dynamics is governed by

τ u̇�r = −u�r +
∮

Γ

wR→R

�r′→�rf(u�r′) d�r ′ + x�r wR→R

�r′→�r = γ (�r · �r ′), (2)

where wR→R correspond to the lateral connections across neurons within the
same population. The lateral connections exhibit symmetric, rotation invari-
ant, and center-surround excitation-inhibition characteristics. x�r is the sum of
all external synaptic inputs and γ is a constant scaling factor (see table 1). In
the rest of the paper, we will restrict our study on inputs having the form:

x�r = h + βv0 (�r · �rv0). (3)

1where ‖�rv‖ = 1 and βv = ‖�v‖
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Let us first consider the case in which the input is constant across the whole
network x�r = h. We can show that the network will converge to a stable
attractor state, given by:

u�r =

{
h

(
1 + 1

η (�r · �rv)
)

h > 0
h h ≤ 0

, (4)
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Figure 2: Response of a 2 di-
mensional discrete neural pop-
ulation ur to a constant input
h. η = 0.5, and dθ = 1◦.

where η ∈ {0, 1} is a constant expressing the
ratio between h and the cosine amplitude, and
�rv depends on the initial state. Figure 2 shows
the result of a simulation of a discrete 2D net-
work. Similarly to [8], when the network re-
ceives a constant excitatory global activation,
it will converge to an active state, in which the
amplitude of the population vector is amplified
proportionality to the external activity. Con-
versely, when the external activity is inhibitory,
the network population coding will be turned
off, each neuron becoming constant. This mech-
anism is known as gain modulation [7].

Let us now consider the case where the network receives a vectorial input
x�r = βv0 (�r · �rv0). Each unit converges, then, towards:

u�r =
1
χ

βv0 (�r · �rv0) =
1
χ

(�r · �v0) (5)

where χ is a constant (see table 1). In this case, the population activity simply
reflects its inputs. Finally, by a linear approximation, we can get the general
solution for both contributions of equation 3 that will be used in the next
sections:

u�r ≈ α

(
1 +

1
η
(�r · �rv0)

)
+

1
χ

βv0 (�r · �rv0). (6)

4 Vectorial Projection across FR
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Figure 3: 3D FR transforma-
tions decomposed into three ro-
tations and one translation at
the origin (a). Rotation in a
plane (b).

As illustrated on figure 3(a), the projection of a
vector from a N-dimensional referential R to a
N-dimensional referential R′ can be decomposed
into one translation from the origin O to the
origin O′ and N rotations, performed serially
on {φ1, ..., φN}.
4.1 Translation
Let �v be a vector in referential R represented
by the population ΩR, and �v′ its projection in
the referential R′ represented by ΩR′ . Assum-
ing that �v

T
is the vector across the origins of

the referentials, the translation is performed by
applying an input x�r ∝ (�r · �v) − (�r · �v

T
) to the

population ΩR′ . By 5, the population vector of
ΩR′ will converge to (�v − �v

T
) = �v ′.
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4.2 Rotation
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Figure 4: Network architec-
ture.

Let φ be the angle of rotation between the two
planar referentials R and R′ (see fig. 3(b)), with
superposed origins O = O′, and �vR,R′(φ) ∝
(cos(φ), sin(φ)) the vector determining that an-
gle, encoded in the population ΩR,R′ . Let ΩR

and ΩR′ be two populations coding for the vec-
tor �v and its projection �v ′. In order to perform
the rotation, we need to define an intermediary
population, the gain field ΩGF . Its architecture
(see fig. 4) can be seen as a two dimensional
planar population where the neurons, denoted
by uGF

�r,�s, are simultaneously sensitive to two pre-
ferred directions �r and �s related to the inputs
incoming from ΩR and ΩR,R′ , respectively. The
network’s dynamic is governed by equation 2.
Note that the lateral weights, responsible for
the gain modulation, are distributed along one
dimension only, namely

wGF→GF
(�r′,�s′)→(�r,�s) =

{
γ (�s · �s ′) �r = �r ′

0 �r �= �r ′ . (7)

The external inputs to the gain field are applied following

xGF
�r,�s =

∮
ΓR

wR→GF
�r ′→�r f(uR

�r ′) d�r ′

︸ ︷︷ ︸
(�r·�v)

+
∮

ΓR,R′
wR,R′→GF

�r ′→�s f(uR,R′
�r ′ ) d�r ′

︸ ︷︷ ︸
(�s·�vR,R′ )

(8)

with wR→GF
�r ′→�r = 2

π χ(�r · �r ′) and wR,R′→GF

�r ′→�s = 2
π χ(�s · �r ′). Due to the lateral

connectivity, the subset of neurons having the same preferred direction �r, have
a convergence activity described by equation 6. If we replace the inputs, we
obtain

uGF
�r,�s ≈ 1

χ
β�vR,R′ (�s · �r�vR,R′ ) + β�v(�r · �r�v)

(
1 +

1
η
(�s · �r�vR,R′ )

)
. (9)

The synaptic weights from the gain field to the output population are

xR′
�r =

∮
ΓGF

wGF→R′
(�r′,�s′)→�r f(uGF

�r′,�s′) d�r ′d�s ′ wGF→R′
(�r′,�s′)→�r =

ηγ

π
(�r · (�r ′/�s ′)). (10)

In analogy to the complex division, we express the rotation of a unitary vector �r
by minus the angle given by the unitary vector �s as �r/�s. As a result, we obtain,
in the representation of the population ΩR′ , a vector �v ′ approximatively equal
to �v rotated by an angle −φ

uR′
�r ≈ β�v

(
�r · (�r�v/�r�vR,R′ )

)
=

(
�r · (�v/�r�vR,R′ )

)
. (11)

A simulation of our results is illustrated on figure 5. We show the activity of
the four populations involved in the transformation. The shift in the direction
representation depends on the discretization but is almost negligible, whereas
the relative error on the amplitude given by E(‖�v‖, ‖�v ′‖) = |‖�v′‖−‖�v‖|

‖�v‖ (see fig.
7), is the result of the approximations made in our development.
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Figure 5: Attractor state of a discrete simulation involving 3600 for the popula-
tion gain field and 60 neurons for all other populations. The inputs (dashed line),
membrane potentials (dotted line) and activities (filled line) are plotted against the
preferred direction of each neuron. The constants are set using η = 0.5. The corre-
sponding population vector is shown at top right of each figure.

N = 2 N = 3

γ (η
√

1 − η2 + acos(−η))−1 3
π
(2 + 3η − η3)−1

χ (1 − γ π
2
) (1 − γ 2π

3
)

Table 1: Expression of the constants defined in the text depending on the dimension
of the population and on the value of parameter η ∈ ]0, 1[ . The use of either 2 or
3 dimensional constants in the synaptic weights depends on the dimension of the
presynaptic population.

4.3 Extension to 3D rotation
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Figure 6: Rotation in
3D space reduced to pla-
nar rotation.

There is no major difference between a rotation
around an axis in 3D and one in 2D, because the for-
mer can be reduced to the latter. Intuitively, as illus-
trated in figure 6, a rotation in 3D space can be seen
successively as 1) a projection of �v on the plane per-
pendicular to the rotation axis �D, 2) a rotation of an
angle φ around �D and 3) the restoration of the com-
ponent parallel to �D lost during the projection. Thus,
the synaptic weights originating from ΩR are set such
that wR→GF

�r ′→�r = 3
2π χ (�r ·�p�r ′), where �p�r = �r− (�r · �D) �D2

is the projection of the preferred direction �r on the
plane perpendicular to the axis �D. We can then replace the first term of equa-
tion 8 with (�r · �p�v). Finally, by slightly changing the weights wGF→R′

and by
adding new synaptic links from ΩR to ΩR′3, we are able to feed the output 3D
population with the rotated projected vector and the vectorial component lost
in the projection, namely

wGF→R′
(�r′,�s′)→�r =

ηγ

π
(�p�r · (�r ′/�s ′))(�r · �p�r) wR→R′

�r′→�r =
3
2π

χ (�r ′ · �D)(�r · �D). (12)

As a result, the output population ΩR′ converges to a stable activity, equal to

uR′
�r ≈ (

�r · (�p�v/�r�vR,R′ )
)

+ (�r · (�v · �D) �D) = (�r · �v ′). (13)

where both terms correspond respectively to the rotated projection of vector
�v, and its component parallel to �D.

2with ‖ �D‖ = 1
3not shown on figure 4
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5 Discussion
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Figure 7: Error relative
to the input amplitude.
Same simulation param-
eters as in fig. 5 were
used.

We have shown how a neural mechanism based on
population vector coding can perform vectorial oper-
ations, such as translations and rotations. This sug-
gests that population coding could be the neural basis
of transformations across frames of reference.

Note that the model’s hypothesis that 3D FR
transformations are performed serially is in line with
the gradient hypothesis for sensorimotor transforma-
tions [2]. However, the model’s assumption that a
FR is represented by a population of neurons, hav-
ing an uniform distribution of preferred direction and
exhibiting a cosine tuning curve that depends on the
coding direction, is not representative of all neurophysiological data[4].
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