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Abstract. We propose a neural network solution of the mazimum
weighted clique problem (MWCP). The MWCP problem comprises the well-
known maximum clique and maximum vertex-weighted clique problem as
special cases. We present bounds for the parameter settings of a special
Hopfield network to ensure energy descent to feasible solutions of the
MWCP. To verify the theoretical results we show the effectiveness of the
proposed approach in an experimental study.

1 Introduction

A clique of an undirected graph is a fully connected substructure and the
mazimum cliqgue problem (MCP) is the problem of finding a clique with maximal
number of vertices in that graph. The MCP is a well known classical NP-hard
problem in combinatorial optimization, not only because of its theoretical but
also for its practical implications. A straightforward generalization of the MCP is
the mazimum weighted cliqgue problem (MWCP). Given an undirected graph with
weights associated with each vertex and each edge, the MWCP is the problem
of finding a clique, which maximizes a weight function w(.). Since the MWCP
comprises the MCP as a special case, it is at least of the same complexity as its
unweighted counterpart.

Several real world applications as graph matching, information retrieval,
experimental design, or signal transmission can be mapped to the MCP [3]. The
MWCP arises, for example, in computer vision when matching two attributed
graphs [2, 11]. Thus, due to its theoretical and practical importance, there
are numerous approaches for approximating the classical MCP including several
neural network heuristics [3]. But only few work has been devised to solve
the more general MWCP. To our best knowledge investigations of neural energy
minimizing methods to the MWCP in its most general form are missing.

In this paper we propose a Hopfield clique model for approximately solv-
ing the general MWCP. We present bounds for the parameters of the Hopfield
clique network to ensure that the network performs an energy descent until it
terminates in a stable state corresponding to a feasible solution.
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This paper is organized as follows: Section 2 formally introduces the MWCP.
Section 3 proposes the Hopfield clique model for solving the MWCP. Section 5
presents and discusses experiments. Finally, Section 6 concludes.

2 The Maximum Weighted Clique Problem

A weighted graph is a triple Z = (V, E, u) consisting of disjoint sets V' and E
together with a mapping p : V2 — R,. The set V is the set of vertices and
E C V2 denotes the set of edges. Elements of E are unordered pairs (i, j) € V2
with i # j. The weight mapping i assigns each vertex ¢ € V and each edge
(i,j) € E apositive weight p(i,7) > 0 and u(é,5) = p(j,4) > 0, respectively. For
non-edges (i,j) € V2\ E the weights are given by u(i,j) = 0. The vertex set of
a graph Z is referred to as V(Z), its edge set as E(Z), and its attribute function
as pz. A normalized weighted graph is a weighted graph Z with pz(ij) € [0,1]
for all i,5 € V(Z). A binary graph is a normalized graph Z = (V,u) with
u(V?) C {0,1}. The number of vertices of a graph Z is its order, written as
|Z]. By G we denote the set of weighted graphs of order n. The adjacency
matriz of a graph Z of order n is the n x n matrix A(Z) = (z;;) with entries
2ij = pz(i,7). A subset C C V(Z) is called clique of Z, if all vertices of C' are
mutually adjacent. The weight w3V (C) of a clique C'is defined by the weighted
sum

wal(C)=av > zi + am- Y zj (1)
ieC I€C
where ay > 0 and ag > 0 are constants weighting the contribution of vertex
and edge weights to the sum w3 (C). A clique C is said to be mazimal if
C C C'" implies C = C' for all cliques C'. A mazimum weighted clique C of Z
with respect to ay and ag is a clique with w3¥ (C) > wq¥ (C') for all cliques
C'" of Z. The mazimum weighted clique problem is the problem of finding a
clique C in a graph Z with maximum weight w3? (C).

3 A Hopfield Clique Network

Following the seminal paper of Hopfield and Tank [5], the general approach to
solve combinatorial optimization problems (COP) maps the objective function
of the COP to the energy function of a neural network. The constraints of the
COP are included in the energy function as penalty terms, such that the global
minima of the energy function correspond to the solutions of the COP. Here the
objective function to map onto an energy function is given by (1).

Let Z € G" be a normalized graph with adjacency matrix A(Z) = (z;;).!
The Hopfield clique network (HCN) Hz associated with Z consists of n fully
interconnected units. There is an excitatory connection between units ¢ and
J with weight w;; = w:; > 0, if (i,j) € E(Z) and an inhibitory connection
with weight w;; = —w;; <0, if (i, j) ¢ E(Z). Thus Z uniquely determines the
topology of Hz. For this reason we identify the units of Hz with the vertices

LIf Z is not normalized, we can first transform Z to a normalized graph Z’, compute the
solution in Z’, and back-transform the solution to Z.
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of Z and excitatory connections between two units with edges between their
corresponding vertices. Inhibitory connections in Hz represent non-edges in
Z. The dynamical rule of Hz is of the form

zi(t+ 1) = z;(t) + Zwijoj (t) +6; (2)
JF#i

where z;(t) denotes the activation of unit 4 at time step ¢ and 6; is a constant
external input applied to unit i. The output o0;(¢) of unit 7 is computed by a
piecewise linear limiter transfer function of the form

1 Cozi(t) > T
0i(t) = { 0 cozi(t) <0 (3)
zi(t)/7 : otherwise

where 7; is a time dependent control parameter called pseudo-temperature. The
output function o0;(t) has a lower and an upper saturation point at 0 and
1, respectively. Starting with a sufficient large initial value 79 the pseudo-
temperature is decreased according to an annealing-schedule to a final value
T¢. The energy function of the network to be minimized is then of the form

B(t) =5 3 3 wioi(t)o; (1) — 3 ioi(t) @

i jFL i

To simplify the formulation of Theorem 3.1 we introduce some technical terms
and notations: Let degg (i) be the number of excitatory connections incident
to unit i. We call degy = max{degg(i) | 1 < i < n} the ezcitatory degree of
Hz and deg; = max{n — degp (i) — 1| 1 <i < n} the inhibitory degree of H.
Since any vertex can have at most n — 1 adjacent neighbors, the excitatory
degree degg is less than n and therefore degr > 0. Let ay,ag € [0,1]. By

Qv zii ifi=j

fis = apziy; @ ifag>0andi#j

1 : ifag=0andi#j
we denote the weighting coefficients with respect to ay and ag. Let 8* =
max;{f;;} be the weighted maximum vertex weight of Z weighted by ay and
¢« = ming;{ fi; } the weighted minimum edge weight of Z weighted by ag. By

wt > 0 we denote a positive constant with upper bound

2 %

+ _
W< n + deg;(degy —1) v (5)

and by w™ > 0 we denote a positive constant with lower bound
w” > degpwt + 60" = w.. (6)

Provided an appropriate parameter setting is given Theorem 3.1 proven in [7]
states that the dynamical rule (2) performs a gradient descent with respect to
the energy function E where the global (local) minima of E correspond to the
maximum (maximal) weighted cliques of Z.
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Theorem 3.1 Let Z be a normalized weighted graph and Hz be a HCN associ-
ated with Z. Assume that 74 > 1 for all t > 0. If w;; = fij -wt, wy; =wT,
and 0; = fi; -w™ for alli,j € V(Z), then

1. E(t+1) < E(t) for all t > 0.

2. There is an one-to-one correspondence between the local minima of E and
the maximal cliques of Z.

3. There is an one-to-one correspondence between the global minima of E
and the mazimum weighted cliques C' of Z with respect to ay and ap.

Proof:  The basic idea to show the assertion proceeds as follows: (i) Use (6) to
show that the local and global minima of F reside in the corners of the unit hypercube.
Establish a bijection between global (local) minimizers of £ and maximum weighted
(maximal) cliques. (ii) To prove that (2) minimizes E, show E(t + 1) — E(t) =
—1/2A"(W + 7I)A where A = o(t + 1) — o(t), W is the weight matrix, and I is the
identity matrix. From (5) and (6) follows that W + 71 is positive definite for all 7 > 1
giving E(t+ 1) — E(t) < 0. With (i) and (ii) at hand it is then straightforward to
show the theorem. O

From the first implication together with the fact that E is bounded follows
that Hz converges. Since the local minima of E(t) correspond to maximal
cliques, we can not guarantee that the network Hz converges to an optimal
solution corresponding to a maximum weighted clique. In addition the network
can converge to unstable equilibrium points u € R" of E(t). Due to their
instability, imposing random noise onto Hz may shift the state vector o(t)
away from w. The upper bound of w:; < w* ensures that Hz performs a
gradient descent with respect to E. The lower bound of w;; > w. guarantees
that #Hz converges to a feasible solution provided that unstable equilibrium
points are avoided by imposing random noise onto the network.

4 Experiments

In our experiments we focused on the maximum vertex weighted problem
(MVWCP), i.e. the MWCP with ay = 1 and ag = 0. This setting allows com-
parison with the Exponential Replicator Equations (REP) [4]. The Replicator
dynamics is derived from evolutionary game theory and is despite its simplicity
a powerful method to approximately solve the maximum clique problem. The
Replicator approach is based on an expanded version of the Motzkin-Strauss
Theorem [8] for the MVCP. Fast exact solutions to the MWCP as proposed in [1], [9]
are confined to discrete vertex weights and therefore are not considered in our
comparative study. Both algorithms, the HCN and the REP, were implemented
in Java using JDK 1.2. All experiments were conducted on a multi-server Sparc
SUNW Ultra-4.

Since there is no widely accepted test suite for the MWCP, we adopted
weighted random graphs (RG), weighted irregular random graphs (IRG) [4] and
k-random cliques graphs (kRCG) [6] as a test bed. Vertex weights of RG, IRG,
and kRCG are identically distributed real values from the interval [0, 1]. Random
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P weight [ time [sec] |

| woecnN wreEp wreEP/wHCN | tHCON trREP trEP/tHON |

[ Vertex weighted random graphs |
0.10 2.23 2.42 1.09 0.009 0.018 2.14
0.25 3.18 3.36 1.06 0.009 0.025 2.75
0.50 5.18 5.43 1.05 0.009 0.038 4.07
0.75 9.33 9.63 1.03 0.009 0.063 6.81
0.90 16.80 17.13 1.02 0.009 0.111 12.60

[ Vertex weighted irregular random graphs |
0.10 4.08 4.22 1.03 0.009 0.048 5.29
0.25 8.08 8.23 1.02 0.009 0.102 10.80
0.50 14.83 14.94 1.01 0.010 0.172 17.50
0.75 21.67 21.76 1.00 0.010 0.191 19.09
0.90 25.90 26.01 1.00 0.010 0.196 19.41

[ Vertex weighted k-random cliques graphs |
5 19.56 19.48 1.00 0.011 0.381 36.0
10 21.54 21.66 1.01 0.011 0.274 25.6
15 23.30 23.45 1.01 0.011 0.218 20.8
20 26.03 26.20 1.01 0.011 0.200 18.2
25 29.38 29.59 1.01 0.010 0.195 18.7

Table 1: Results of test series on vertex weighted graphs.

graphs are graphs where the occurrence of each edge has an prespecified edge
probability p. Irregular random graphs are random graphs with edge proba-
bility p but non-identically distributed vertex degrees. The k-random cliques
graphs consist of the union of k cliques of randomly chosen size. As opposed
to RG, IRG and kRCG are irregular in the sense that their vertex degrees differ
substantially — a feature shared by many real-world instances.

In our experiments we considered RG, IRGs and kRCGs with 100 vertices. For
each edge probability p = 0.1,0.25,0.5,0.75, 0.9 we generated 500 RGs and IRGs.
Similarly we generated 500 test instances of XRCGs for each k = 5, 10,15, 20, 25.
Thus, we tested both algorithms on 7500 randomly generated weighted graphs.

Table 1 summarizes the results. The first half of the table shows the average
maximal weight wgcon and wrgp of a clique found by HCN and REP, resp., and
the ratio of the average maximal weights wrgp/wrcn. The second half of each
table summarizes the average time tgon and tggp required by HCN and REP,
resp., to find a solution, and their ratio of the average times tggp/tmcn. The
time is measured in sec.

The results show that REP returns in average slightly better solutions than
HCN for almost all cases. For dense and irregular graphs, however, computation
time of REP increases while the time of HCN is roughly constant irrespective
of the type of input graph such that HCN is twice up to 36 times faster than
REP. Altogether, HCN appears to be more robust on different types of weighted
random graphs with respect to speed and might be a good alternative for large
scale problems.

5 Conclusion

We have proposed a Hopfield clique network for approximately solving the MWCP.
We presented bounds for the parameters to ensure that the network performs an
energy descent until it converges to a local minimum corresponding to a feasible
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solution of the MWCP. In experiments we have demonstrated the effectiveness of
the proposed algorithm for the MVWCP with respect to quality of solution and
computational time.

Appendix: Parameter Setting

We used the following parameters in our experiments:

HCN REP

N 2
n + degr(dege — 1)
w = deng+ + 6

kK = 5

e = 107°
n

3
I

The parameters k and e control the
speed and precision of REP. For de-
tails we refer to [10].

Tt+1 = QtTt
B 09 : ift<3
a = 05 : ift>3
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