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Abstract. We apply support vector learning to attributed graphs
where the kernel matrices are based on approximations of the Schur-
Hadamard (SH) inner product. We present and discuss experimental
results of different classifiers constructed by a SVM operating on positive
semi-definite (psd) and non-psd kernel matrices.

1 Introduction

Support vector machines (SVM) [12] have proven to be widely applicable and
successful in data classification. Given a set X = {x1,...,zar} of training
objects with corresponding labels Y = {y1,... ,ym} C {+1,—1}M a SvMlearns
an optimal hyperplane to separate the training objects in a feature space by
solving the constrained optimization problem
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Solving (1) is accomplished through minimizing the Lagrangian dual problem
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where Q = (gi;) with gij = yiy;p(xs)" ¢(x;). Here, k(zi, z5) = p(a:)" ¢(z;)
is called the kernel. The kernel k gives rise to a psd kernel matriz K = (k;;)
with k;; = k(a:i,a:j).

So far, most research on kernel methods has focused on learning from at-
tribute value data. The investigation on kernel methods for attributed graphs,
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however, has recently started [2] and is still widely unexplored, though graphs
are a more adequate representation of patterns in structured domains than
feature vectors.

In this paper we propose the Schur-Hadamard inner product for support
vector learning of attributed graphs. The SH inner product shares some prop-
erties of a kernel, but is in general not a kernel. In experiments we investigate
the applicability of the SH inner product for support vector learning of graphs.

This article is structured as follows. Section 2 describes the SH inner prod-
uct. Section 3 presents experimental results. Finally, Section 4 concludes.

2 The Schur-Hadamard Inner Product

Let S be a set. By S!% we denote the set of all ordered tuples (i,j) € S* with
i # j. The set of all n x m-matrices A = (a;;) with entries a;; from a set S is
denoted by M xm(S).

Let A be an inner product space over R, for example A = R™. An at-
tributed graph is a tuple X = (V,u) consisting of a finite set V # () and a
function p : V2 = A. The elements of V are the vertices of the graph X and
the pairs (i,j) € VI with u(i,j) # 0 are its edges. The function yu is the
attribute function of X. By G = G4 we denote the set of attributed graphs
with attributes from A. By G" = G’ we denote the set of all attributed graphs
with m < n vertices. The vertex set of a graph X is referred to as V(X), its
edge set as E(X), and its attribute function as ux. Let X be an attributed
graph of order |X| = |V(X)| = n. The (attributed) adjacency matriz of X is a
matrix A(X) = (i) € Mnxn(A) with entries z;; = px (3, j).

A permutation acting on X is a bijection 7 : V(X) = V(X) from V(X)
onto itself. The image graph of a permutation 7 acting on X is denoted by
X7™. The set Sx of all permutations acting on X is called the symmetric group
of X. A permutation 7 acting on X corresponds to a relabeling of X and thus
yields a reordering of its adjacency matrix. In general we have A(X) # A(X™).

For purely technical reasons we align graphs of different order to graphs of
equal order by inserting additional nodes and edges into the smaller graphs that
are all labeled with 0. Let A, B € M,x,(A). The inner product ( , ) associated
with A™™ induces an inner product on My xn(A4) by (4, B) = (v(A),v(B)),
where v(A),v(B) € A™™ are the vectors obtained by concatenating the rows
of A and B, respectively.

The concept of a Schur-Hadamard inner product of graphs can be regarded
as a degenerated counterpart of the concept of an inner product defined on
vector spaces. It is defined by

c:G"xG" >R, (X,Y)r— Jax (A(X™), A(Y)) .
Despite its name the SH inner product is in fact not an inner product, since
it is not bilinear. Nevertheless, the Euclidean norm induced by the SH inner
product is a metric. In addition the SH inner product is symmetric, positive,
and the Cauchy-Schwarz inequality holds [5]. The SH inner product, however,
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shares some properties of a kernel, but it is in general not a kernel as can be
shown by counterexamples. Under certain restrictions, it is possible to show
that the SH inner product is a kernel.

Regardless whether the SH inner product ¢ is a kernel or not, its computa-
tion is an NP-complete problem [7]. Thus for large datasets of graphs computing
the pairwise similarities might be intractable in a practical setting. One way
around is to resort to heuristics which return approximate solutions within an
acceptable time limit. But this may yield a non-psd kernel matrix.

Occasionally, non-psd matrices K are applied to (2). Examples include
kernel matrices induced by the well known sigmoid kernel [12] or the tangent
distance kernel [3]. If K is indefinite the primal-dual relationship does not exist.
Thus, it is not clear what kind of classification problem we are solving. In addi-
tion, non-psd kernels may cause difficulties in solving (2). Surprisingly, non-psd
matrices arising from kernels similar to the sigmoid kernel or tangent distance
kernel have been applied successfully in several practical cases. According to [3]
the experimental results show that the class of ’kernels’ which produce accurate
results is not restricted to conditionally positive definite (cpsd) kernels.

Nevertheless, theoretically sound solutions of support vector learning based
on non-psd matrices have been proposed, for example the approach by Graepel
et al. [4] where each pattern is described by the vector of proximities to all other
patterns.

3 Experiments

In all experiments we used the SVMLight [8] embedded into a 10-fold cross
validation. We first computed the matrix K = (k;;) of pairwise similarities
with respect to the normalized SH inner product. All SH inner products were
approximated by solving the maximum weighted clique problem in an inner
product graph with a special Hopfield network [6], [7]. Next we learned a support
vector classifier using the following methods: (PPC) the pairwise proximities
classifier as proposed by [4], (PPC-RBF) the PPC classifier with RBF kernel, (SH)
support vector learning which directly operates on K, (SH-RBF ) support vector
learning using a RBF function on naive distances djj = 1 — k;;, (SH-RBFg)
support vector learning using a RBF functions on Euclidean distances dg. =

VK — 2k + k2 = [2dY.

Synthetic Characters.

In our first experiment we investigated how a SVM can deal with both types of
errors occuring in graph based representations, structural variations and noisy
attributes.

We used synthetic data to emulate handwriting recognition of alphanumeric
characters as it typically occurs in pen technology of small hand-held devices,
for example PDAs. We do not apply additional on-line information. To simu-
late handwriting recognition as a classification task for structured objects, we
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Figure 1: Images of handwritten characters ' X’ and 'Y”’. Explanation see text.

draw two handwritten characters models ¢ = {"X’, ’Y’} using an X windows
interface. The contours of each image were discretized and expressed as a set
of points in the 2D plane. Both model images are shown in the first column of
Figure 1.

For each model character we generated 50 corrupted data characters as
follows: First we randomly rotated the model image. Then to each point
we added N(0,0) Gaussian noise with standard deviation ¢ = 2,4,6,8,10.
Each point had 10% probability to be deleted. Columns 2-6 of Figure 1 show
examples of corrupted data images for different standard deviations o. For
sake of presentation the graphics does not show the rotation of the images.

From each point set we randomly selected points such that the pairwise
normalized distances between the chosen points is larger than a given threshold
6. We transformed this point set P to a fully connected attributed graph. The
vertices v(p) represent the points p € P, and the edges represent an abstract
line between two points. To each vertex v(p) we assigned a three dimensional
attribute vector @ = (a1,a2,as) where a; is the normalized distance of the
point p to the center of gravity of the corrupted image, as is the mean distance
of the normalized distances from point p to all other points ¢ € P, and as is
the variance of the normalized distances between p an all other points q € P.
To each edge connecting vertex v(p) and v(q) we assigned a two dimensional
attribute vector b = (b1,b2). The first attribute is the normalized distance
between p and q. The second attribute measures the normalized distance
between the center of gravity of the corrupted image and the abstract line
passing through p and q. Thus each graph is a representation of a character,
which is invariant to rotation, translation, and scaling.

The average order of the graphs for each standard deviation o is 40.0 with
variance 23.7. The smallest graph was of order 32 and the largest of order 50.
Thus besides noise in the attributes there is a strong structural variation.

Table 3(a) summarizes the mean predictive accuracy for different noise levels
o. The results show that SVM with kernels based on the SH inner product
can cope with both, noisy attributes and structural variation of the data. As
expected, the performance decreases with the noise level though the recognition
rate is very good even for highly corrupted and randomly rotated characters.
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Figure 2: Examples of rotated images of handwritten digits.

Handwritten Digits
In the second of our experiments we applied the SVM to classify handwritten
digits invariant to rotation. We used the training set 7 of the well-known
MNIST database containing 60,000 gray-level images of handwritten digits
[10]. We selected a subset of T consisting of 100 images of ‘0" and 100 images of
'1". We randomly rotated all 200 images as shown in Figure 2 for six examples.
Each image was transformed into an attributed graph in a similar way as in the
previous section to obtain a representation of the numbers ‘0’ and '1’, resp.,
which is invariant to rotation, translation, and scaling.

For the digits dataset we achieved an accuracy of 0.995 for PPC and PPC-RBF.
The other variants performed slightly worse but were still better than 0.98.

Mutagenicity

The mutagenicity of a chemical compound is closely related to its cancero-
genicity. A particular problem is to discover rules to predict mutagenicity in a
database of nitro aromatic compounds (e.g. [11]). The mutagenesis dataset is
usually considered in two subsets containing 188 and 42 examples respectively.

Each compound in the dataset is described by its atoms and their bonds.
An atom is described by its element symbol, its type (e.g. aromatic) and a
partial electrical charge. There also exist some attributes that describe the
molecule as a whole. For our experiments we have only used the structural
information.

The estimated predictive accuracies are shown in Table 3(b). Surprisingly,
the naive SH-RBF approach outperforms all other algorithms reported in the
literature. Although the ’kernel matrix’ was indefinite, the SVMLight terminated
for the optimal parameter setting while non-termination occurred for other
parameter settings. The results for the random walk kernel (RWK) and the
description logic kernel (DLK) are taken from [9] and [1], respectively.

4 Conclusion

In this paper we have successfully applied support vector learning with kernels
based on the SH inner product. We directly operated on non-psd matrices
of approximated pairwise SH similarities and also considered different variants
of the theoretical sound PPC approach. Though the latter approach works
reasonably well, it is in general outperformed by the former approach. The
results confirm that in practice the property of a kernel being cpsd is a sufficient
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dataset 188 42

. 2 4 6 8 10 g‘gﬁ 8'28 -

PPC 10 1.0 094 092 0.71 o o 083
PPC-RBF 1.0 1.0 096 094 0.77 CheREF 088 O
SH 1.0 1.0 095 096 0.71 o o 0se

SH-RBFr 1.0 1.0 095 096 0.80

SH-RBFy 0.92 0.90
SH-RBFr  0.90 0.86

(a) Synthetic handwritten letters
(b) Mutagenesis dataset

Table 1: Estimated predictive accuracy.

but not necessary condition to learn an classifier with low error rate. Future
work will focus on conditions when the SH inner product is a kernel.
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