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Abstract. We formulate the problem of inference in nonlinear dynami-
cal systems in the Expectation-Propagation framework, and propose two
novel inference algorithms based on Laplace approximation and the Un-
scented transform. The algorithms are compared empirically and em-
ployed as an improved E-step in a conjugate gradient learning algorithm.
We illustrate its use for data mining with two high-dimensional time
series from marketing research.

1 Introduction

Many real-world systems are nonlinear, dynamical and stochastic in nature.
Inference and learning of nonlinear system models with hidden dynamics is a
difficult task, which requires approximations and simplifications to be made.
In this paper we consider dynamical systems where we have nonlinearities in
the state- and observation equations,

zy = f(we—1) +ve, v, ~ N(0,Q); v = g(xe) + we, we ~ N(0,R) (1)

with conditionals p(z¢|zi—1) ~ N(f(zi-1),Q); p(yt|lze) ~ N(g(zt), R). Here
f(-) and g(-) are (known) nonlinear functions, see figure 1, and A (u, ) de-
notes the normal distribution with mean p and covariance matrix ¥. In the
familiar Kalman filter and smoother, all functions are assumed linear and so-
called forward and backward messages (which serve as intermediate steps for
computing the belief state at each time) can be computed exactly. In the non-
linear model, forward and backward messages cannot be computed exactly any
more, o one has to resort to approximations. Two popular methods (e.g. see
[3]) are the extended Kalman filter (EKF), which linearizes the nonlinearity
so that Gaussian messages can be computed and the unscented Kalman filter
(UKF), which again assumes Gaussian posterior beliefs but computes moments
from a set of nonlinearly transformed points.
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Figure 1: left: Nonlinear dynamical system. All nodes are continuous-valued,
and f and g are arbitrary nonlinear functions. Shaded nodes are observed.
m denotes the prior distribution on X. Time progresses from left to right;
right: factor graph representation of the NLDS. Evidence is incorporated into
the factor nodes, which span two consecutive hidden nodes. Messages are sent
between hidden and factor nodes. A hidden node’s outgoing message in a
certain direction equals the incoming message in this direction

2 Inference with Expectation-Propagation

Expectation-Propagation (EP, [2, 1]) is a message passing method to compute
the beliefs in a graphical model, where all beliefs are approximated e.g. with
Gaussians. Messages are propagated and recomputed iteratively until (possi-
ble) convergence. In the nonlinear dynamical system model (figure 1, left),
we factorize p(z1.7, y1.r) as [[j—y Ye(wi1,2¢) = [T1—y O (@_1, 1) - O (4, ye)
and beliefs p(z;|y;.1) are computed by &, (mt)ﬁt (z¢), where the forward message
Gy (xy) is the message from ¥; — x; and the backward message Bt_l (w¢—1) is the
message from ¥, — z,_; (figure 1, right). Hence we express a two-slice belief as
a scaled product of a 2-slice potential and ’incoming messages’, ps(z¢—1,Tt) X
Gi—1(2p—1) W (21, 2¢) Bt (xs) where Uy(zi_1,2¢) = p(at|xi—1)p(ye|ze). Belief
q¢(w¢) is obtained by a marginalize-collapse, q¢(x;) = collapse,, | pi(xi—1,2¢)
where collapse,, , involves projection to a Gaussian and marginalization over
x¢—1. A similar expression can be given for obtaining ¢;(z;_1) from the poten-
tial. The message passing algorithm then reads:

1. pe(xp1,2) Hincoming(\llt) Uy (mpy,24)
= dt71($t71) : ‘I’t(ﬂvt—l,xt) ‘Bt(ﬂct)
2. gy (zy) = collapse [/ﬁt(xt—hﬂ?t)d\ﬂ?t'

ar (zv)
message(zy — Uy)

3. message(V; — zp) =

For nonlinear systems, the ’difficult’ quantity is ps(x¢—1, ;) because of the
nonlinearities in ¥y (x;—1, ;) and the integral. In the collapse step, one projects
the nongaussian marginal onto a suitable Gaussian approximation.
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2.1 Laplace approximation

In the first approach we collapse the nongaussian marginal onto a Gaussian by
applying the Laplace approximation,

//&t,l(a?t,l)\llt(a?t,l,a:t)Bt(a?t)h(a:t,l,a:t)da?t,lda:t
= [ dxiexp(F(x)} & [ dxiexn{@x)} 2)

where exp{Q(x¢)} ~ N (x¥, —(F" )~ (x})) and Q(xy) is the quadratic approx-
imation of F(x¢) around its extremum Xj.

2.2 Unscented approximation

The Unscented transform (UT, e.g. [6, 3]) is a method for approximating
the moments of a variable Y that is depending on a Gaussian variable X via
a nonlinear transform f. E.g., the first moment of the distribution of Y is
(V) ='[dXN(X;u,V)f(X). The latter integral is approximated numerically
as »,w;Y;, where w; are suitably chosen weights (in the UT, )" w; = 1)
and Y; = f(x;), i.e. nonlinearly transformed “sigma points” y; which are
deterministically chosen samples from the Gaussian over X. In our second
approach, we use the unscented transform to approximate the nongaussian
two-slice joint p¢(zi—1,x:) with a Gaussian, in three steps: 1. prediction: ap-
proximate Gy_1(zi—1)¥¢ (21, 2:) with a Gaussian p}(z¢_1,2:) using UT; 2.
correction: compute pj(z;) by marginalization; approximate pj(z;)U?(z;,y;)
with a Gaussian pf(z:,y:) using UT; incorporate evidence into pj(y¢|z:) =
D; (x4, Y1) /pf (z¢), resulting in pi* (y¢|x¢); 3. combination: compute q¢(z¢—1,T:) =
pi(Ti-1, $t)Pf*(yt|$t)Bt(l‘t), and obtain g¢(z¢—1) and ¢;(z+) by marginalization.
We use UT for computing moments of the joints p; (z:—1,t), p; (zt, yt), e.g. by

/ / oo (B W (@, )b, w)dzedzy Y wiFa(x)  (3)

We remark that an Unscented smoother has been proposed before [6], but that
our formulation does not require the dynamics to be inverted. Furthermore,
we note that one forward-backward pass is already sufficient in this algorithm,
since the ;(x;) message is not used inside the collapse operation.

3 Learning with radial basis functions

3.1 EM updates

It was proposed in [4] to parameterize the nonlinearities in (1) with radial basis
functions p} (dynamics) and pj (observer), and include weighted inputs u;:

L [dXdYp(X, Y)Y = [dXN(X;u, V) [dYN(Y; f(X),2)Y; (-) denotes expectation.
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{ Tyl :Z hlpf(l't)+Afl't+BfUt+bf+’Ut _0f<1>f+vt (4)

yt:Z hlpg(l't)-i-Al't-l-B’U,t-l-b +wt_0(l>t+wt

where v; ~ N'(0,Q), w; ~ N(0, R) and p(z;) and p!(z;) are Gaussians in z;
space. In this model, EM learning can be done by alternating an E-step (e.g.
using an inference algorithm from the previous section; an extended Kalman
smoother was used in [4]) with an M-step (where parameters are updated). For
the above model, one computes new parameters 6 £ ég and covariances Q, R as

J J -1 T T —1
A . T . ;
O =2 (12t (Z<<I>f<1>f ) =Y e (Z@z@% >t>
t=1 t=1 =1 —1
N J o T
JQ =Y (weraaf)e —0r Y (¥fali)iT Z yeuD)e — 6, Z 89yT),
t=1 t=1 t=1

where J = T — 1, superscripts 7,7 denote transposition and y; are instantiated
when observed. Prediction of partially known outputs can be done by estimat-
ing the hidden state at the to be predicted time stamps (where known outputs
are again instantiated and unknown outputs are integrated out), and the mean
state estimates are then passed through the learned output nonlinearity.

3.2 ECG updates

In [5] it was shown that the actual gradient of the likelihood may be computed if
the derivative of the complete data loglikelihood can be computed. Direct max-
imization of the gradient of the likelihood (e.g. using conjugate gradients, lead-
ing to an Ezpectation-Conjugate-Gradient or ECG algorithm) is beneficial when
relatively many unobserved quantities are present in the model. If we define
S =3 (wrrali )i —0p X (S el ) — 3 (w1 ®F 10T + 60, 3 (¥ 0 T),0F
we compute the gradient of the loglikelihood £ with respect to () and 8; for
the parameterized nonlinear model (4) as

J

Va(0) =507 'sQ - 50

Ve, (£) = Q7 <Z<wt+1<1>{ T~ b Z@g‘@ﬂ)

t t

Analogous expressions can be derived for Vi (£) and Vy, (£). As an aside, we
enforce positive semidefinite covariance matrices during learning by updating
their Choleski factors Py rather than the matrix entries ();; themselves. By
the chain rule of differentiation this requires for example to postmultiply the

gradient with respect to Q with a factor gg(’”
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4 Comparison on artificial data

We analyze our EP-based inference algorithms with a 1-D NLDS: [6]

Ty = xp_q1 +sin(@e_q) - 1 + vy, vy ~ N(0,Q)
Yt = a:f—i—wt, thN(O,R)

This system has unstable fixed points at —m,7 (mod 27) and a stable fixed
point at 0 (mod 27). The squaring nonlinearity in the observer gives rise
to ambiguity in the polarity of the underlying state. We compared the perfor-
mance of our EP-based algorithms (Laplace, denoted by EPEKS; Unscented, by
EPUKS) with two benchmark algorithms (EKF, UKF) at different noise levels.
We measured algorithm performance with the statistic NMAD = mean; |z; —
#¢|/ var({y:}). We repeated 25 runs with different noise realisations (for vary-
ing noise levels @), R) and fixed the data length T to 40. In each trial we used 2
iterations for our Laplace algorithm (EPEKS) and 1 iteration for our Unscented
algorithm (EPUKS). In figure 2 the results are plotted for a nonlinear (left) and
linear (right) observer, resp. In all cases, both EP algorithms outperform EKF
and UKF (further signified by the fact that the distribution of performance
differences® has mean larger than zero), except for the case [Q, R] = [0.01, 1]
where EPEKS suffers from the emergence of non-positive definite covariance
matrices. In turn, the inferred state at these nodes becomes incorrect since
the search for the function optimum in the Laplace algorithm diverges. To our
knowledge, no remedies have yet been devised in the literature to deal with this
(technical, yet important) problem. This effect is even more pronounced in the
linear observer case: apparently, the linear observer causes the same ’high ob-
servation noise’ behaviour as in the nonlinear case for already small magnitudes
of R. On the other hand, when EPEKS does not suffer from this phenomenon,
it performs better than all other methods. Finally, our Unscented algorithm is
better than EKF and UKF in all cases, making it the more robust choice; in
experiments with a two-dimensional system, this was further confirmed.
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Figure 2: Median NMAD for algorithms EKF, UKF, Unscented, Laplace over
25 rumns, for (left) nonlinear and (right) linear observer

2NMAD(COMP) — NMAD(EP), where COMP = {EKF, UKF}, EP = {EPEKS, EPUKS}
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5 Data mining of marketing time series

We applied the ECG algorithm? to the task of data mining of marketing time
series?. Here the underlying assumption is that a marketing steering variable
has both an immediate influence on the output (via the observer) and a delayed
influence via the dynamics (e.g. when ’the general opinion’ about a brand grad-
ually changes as a result of PR activities). Two time series were ’compressed’
into a 2-D hidden representation. First: 12 inputs (marketing mix, exogenous),
21 outputs (market shares, consumer perceptions), length 64 weeks. Second: 10
inputs (marketing mix, exogenous), 46 outputs (sales figures, consumer percep-
tions), length 24 weeks. The market-shares time series has periodicities in the

Figure 3: Compressed 2-D representation of marketing time series using ECG

order of 16 weeks (figure 3, left), indicating more global trends. The sales time
series shows underlying bursts (figure 3, right) that appear to be correlated
with some of the inputs, indicating stronger dependence on steering variables.
In the sequel we will study ways to incorporate prior knowledge on the process
in the NLDS model and evaluate the predictive power of our method.
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