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Abstract. The amygdala has repeatedly been involved in the pro-
cessing of emotional reactions and conditioning. This paper presents a
neurobiologically inspired computational model of the emotional mem-
ory in aversive behaviors. This artificial neural network aims at partially
reproduce the same characteristics as the amygdala when it induces the
aversive state experienced by individuals with a withdrawal effect.

1 Introduction

The amygdala is one of the basal ganglia, small islands of gray matter that
lie deep within the white matter. It is located within the temporal lobes on
each side of the brain and forms part of the limbic system. The amygdala
is composed of two almond-shaped, fingernail-sized structures that are con-
nected to most brain areas, especially advanced sensory-processing areas. Its
principal task is to filter and interpret incoming sensory information in the con-
text of our survival and emotional needs, and then to help initiate appropriate
responses[5].
The objective of our project is to propose a computational model of emotional
memory in order to validate neurobiological data observed in the amygdala
nuclei in the morphine weaning experiment. This study is based on the follow-
ing hypothesis. The associative memory process (which is the root of relapse)
is caused among other things by a persistent modification of synaptic trans-
mission and by the activity of the neural network of amygdala and associated
structures. The aim is then to elaborate a neural network with the following
constraints. On the one hand the learning or the associative memory only ex-
ploits the Hebb’s rule. On the other hand connections and the different types
of neurons respect the neurobiological data.

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 367-372



2 Neurobiological data

2.1 Amygdala

The amygdala is a complex structure, consisting of about twelve distinct nuclei[6]and
we decided to group them into two parts: the basolateral nucleus BlA and the
central nucleus CeA. We consider there are only inhibitory neurons in the CeA
and there is approximatively 10 percent of inhibitory neurons in the BlA. The
amygdala is linked to other cerebral areas. We are particularly interested in the
link with the hippocampus which has to centralize the different sensory inputs
in order to activate some neurons that can recognize a specific environment.
Sensory information is not only processed by the conscious system but also by
the amygdala. It allows animals to automatically react to emotional stimuli
(the fear for example)[2]. This is precisely the kind of behavior that has been
considered. Finally a simplified input/output diagram(fig 1) of the amygdala
has been used.

Figure 1: Simplified diagram for the amygdala. Bla is the basolateral nucleus
CeA is the central nucleus and ITC is the inferior temporal cortex. A triangle
represents an excitatory neuron and a circle represents an inhibitory one.

2.2 Drug addiction’s effects

The presence of drug creates an overproduction of dopamine which creates
a sensation of pleasure[1]. Our goal is to create a model of the withdrawal
and this state cannot be considered as an external stimulus. Therefore the
amygdala should play a role in the withdrawal effect. It can be explained by
a dopaminergic network: the axons take the meso-cortico-limbic way. Many
studies have shown the essential role of this way in the effect of relapse[4].
We have made the hypothesis in our study that this way is operative in the
withdrawal effect.
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3 Methods and Experimental results

3.1 Methods

Some meatballs of morphine are given to the rats. Once they are swallowed
morphine is regularly released in the body. Rats are then weaned by injection
of naloxone. This action is called US (Unconditioned stimuli) because it does
not depend on the rat’s past. It has a direct effect on the withdrawal. This
action takes place in a box with separated compartments. The box is in a room
we call the Env+ (Environment). The presentation of one of the compartments
to the rats will be the CS (Conditioned Stimuli), respectively CS+ for the one
where the weaning of morphine is and CS- for the other. The rats are used to
2 rooms. Six days long, they are alternatively placed in these different rooms,
one day in the first room and the next day in the other. They are weaned in
the same compartment three times, the three other days they receive in the
other compartment a saline solution, which is assumed to be neutral.

Injections tests
Group CS+ In the box Env+
Control Saline Saline Hazard
Env- Saline Naloxone Hazard
Env+/CS+ Naloxone Saline CS+
Env+/CS- Naloxone Saline CS-

Table 1: summary of the different steps of the experiment

4 Experimental results

Experimental results (fig 2):

• A strong injection of naloxone: the CeA is very active contrary to the
BlA but the few active neurons have a stronger activity than expected
with a saline injection.

• A new exposure to the weaning context: the BlA is clearly active and the
CeA shows a slight activity.

• The associative learning is located in the BlA.

The biological study of these nuclei determines the internal structure of the
layers of our model
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Figure 2: Measure of c-fos mRNA expression at the anatomical and cellular
levels after in situ hybridization with radioactive probes

5 Simulations

5.1 Parameters

We have simulated the different amygdala’s nuclei by a neural network. The
neural activity surrounding a synapse can modify the synaptic weight of a
connection. This phenomenon induces the synaptic plasticity [3]. In our case,
we consider that the change is always an intensification. Then this rule can be
mathematically defined by the following formula (1):

wt+1
i − wt

i = a.y.xi (1)

with a a constant which defines the learning rate, wt
i the weight of the connec-

tion at time t , y the activity of the effective neuron and xi the activity of the
receptor neuron. A threshold is also used to prevent an infinite increase of the
weight.
The output function of the neuron is a sigmoid (2):

{
f(x) = 0 if x ≤ 0.2
f(x) = N. 1

1+exp θx if x > 0.2 (2)

In fact, neurons follow the law all or nothing but this behavior has not been
implemented in our model because we have chosen to represent several neurons
by one. It allows us a quantification. In fact, instead of having neurons with
their output values between 0 and 1 the obtained result is in the range [0, N ].
This option allows simplifying the output values even if the quantification is
conserved. In order to make an associative learning we propose a network with 7
inputs among which an inhibitory one, 3 for the environment (a known one and
several others), 2 for the context, 1 for the presence of naloxone and the other
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Figure 3: Obtained network: it respects data given by the team of neurobiolo-
gists. Squares represent excitatory neurons and circles inhibitory ones.

for the presence of dopamine (fig 3). We have chosen an inhibitory neuron for
the naloxone. Indeed the naloxone prevents the activity of the neuron activated
by the morphine. According to neurobiological data, a mechanism has to be
found to obtain a stronger activation of a neuron thanks to the inhibitory action
of another one. It is defined by the successive processing of neurons 11, 15,
16 and 18. When 6 is activated (injection of naloxone) 11 is less active and
thereafter 16 is less active too. As a consequence 18 is more active due to the
primary inhibitory action of the naloxone. Furthermore neurons 8, 9, 10 allow
the association of the environment and the context. Neurons 12, 13, 14 and
17 are useful for the synchronization with neurons 11, 15, 16 and 18. Neuron
19 is useful for the inhibitory action of the CeA and neuron 21 corresponds to
the group of neurons included in the CeA that are not connected to the BlA.
Indeed it is necessary to allow the CeA to be active even if neuron 19 is not.

5.2 Tests

We have tested the network before learning and after in order to compare the
simulated data to the experimental ones. We have analazed the number of
activated neurons in the two nuclei and the activity of the neurons whether or
not they are a little activated. Indeed, it’s important to dissociate the quantity
of the quality because the experimental results do.
We have then analazed 4 cases the one with naloxone and the one without
before and after learning.
Before learning when there is no injection of naloxone, neuron 11 is very active.
This implies the activation of 16 and then 18 is not active enough to enable
Hebbian learning. The result is that the CeA is not active. When there is an
injection of naloxone, neuron 18 is active, and neuron 20 is active enough to
excite all neurons of the CeA.
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After learning when there is no injection of naloxone, the connection between
neurons 12 and 18 is sufficient to generate the firing of neuron 20 despite the
inhibitory action of neuron 16. Since the seventeenth to nineteenth connection
has been reinforced there is only one neuron active in the CeA: neuron 21. We
obtained the same result with an injection of naloxone.

6 Conclusion

It is a first attempt to take into consideration neurobiological information and
the result of behavioral experiments in the design of an artificial neural net-
work. All simulations performed well, indicating that the model is appropriate.
However as experiments are still running, it is possible that we will have to add
some connections or neurons in order to include in the model the new discov-
ered properties. In addition, many questions remain. How to take into account
that the learning stage last several minutes? Are there other parts in the brain
that play an important role? Is there a unique interpretation of neurobiologi-
cal data? Finally we can also suggest new experiments to confirm or invalidate
new hypothesis on the structure and the functioning of the emotional memory
in aversive behaviors.

References

[1] B.J. Everitt, R.N. Cardinal, J. Hall, J.A. Parkinson, and T.W. Robbins.
The amygdala: a functionnal analysis chapter 10. Oxford University Press
2nd edition, 2000.

[2] M.S. Gazzaniga, R.B. Ivry, and G.R. Mangun. Cognitive Neuroscience.
DW.W. Norton and Company 2nd edition, 2002.

[3] D.O. Hebb. The organization of behavior: a neuropsychological theory.
Wiley, 1949.

[4] M.R Rosenzweig, S.R. Leiman, and A.L. Breedlove. Biological Psychology.
Sinauer Associates Inc. 3rd edition, 2001.

[5] R. Sylwester. A Celebration of Neurons. Association for Supervision and
Curriculum Development, 1995.

[6] B. Whishaw and I.Q. Kolb. Introduction to brain and Behavior. W. H.
Freeman and Co, 2001.

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 367-372




