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Abstract. This work proposes a simple way to improve a clustering algo-
rithm. The idea is to exploit a new distance metric called the “Euclidian
Commute Time” (ECT) distance, based on a random walk model on a
graph derived from the data. Using this distance measure instead of the
usual Euclidean distance in a k-means algorithm allows to retrieve well-
separated clusters of arbitrary shape, without working hypothesis about
their data distribution. Experimental results show that the use of this
new distance measure significantly improves the quality of the clustering
on the tested data sets.

1 Introduction

In clustering, the data distribution has an important impact on the classification
results. However, in most clustering problems, there is few prior information
available about the underlying statistical model, and the decision maker must
make some arbitrary assumptions. For instance, the k-means algorithm, in its
basic form, can fail on data sets containing clusters of arbitrary or even non-
convex shape, even if they are well-separated.

In this work, we propose the use of a new distance measure, the Euclidean
Commute Time distance (ECT distance, see reference [11] and [12]), in order
to improve the clustering performance. The ECT distance is based on a random
walk model on a graph derived from the data. More precisely, the ECT distance
is a distance measure between the nodes of a weighted graph and presents the
interesting property of decreasing when the number of paths connecting two
nodes increases or when the “length” of any path decreases, which makes it
well-suited for clustering tasks.

At first sight, the proposed method seems similar to the classical “shortest
path” distance on a graph (also called Dijkstra or geodesic distance [2]). Actually
our distance metric differs about the fact that it takes the connectivity between
nodes into account: Two nodes are “close” according to this distance if they
are highly connected. Notice that the idea of exploiting random walks concept
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for clustering has already been proposed by Koren and Harel [7], by using the
notion of escape probabilities to find separating edges of a graph. The difference
between the two works is that our method is based on a distance measure and has
a nice geometric interpretation in terms of a Mahalanobis distance (see Equation
2).

The paper is organized as follows. An introduction to the ECT distance is
provided in Section 2. Section 3 shows how the ECT distance can be computed
from the Laplacian matrix of the graph derived from the data. Section 4 presents
the clustering algorithm based on ECT distance. Section 5 provides experimental
results on an artificial data set and on a digital characters clustering problem.

2 Distance measure based on a random walk model

The essential of the theory justifying the defined distance is developed in papers
[11] and [12]. Only a short overview is provided here.

2.1 A random walk model on a weighted graph

In a first step, the data (N observations in total) are linked to form a connected
graph in the following way: Each observation is represented by a node of the
graph and is connected to his k nearest neighbors, according to the Euclidean
distance. In addition, the minimum spanning tree [3] (minimizing the sum of
the Euclidian distances) is computed and its edges are added to the graph in
order to obtain a connected graph : each node can be reached from any other
node of the graph through at least one path. Following the definition of this
graph, we expect that two points in the same cohesive cluster are connected by
a large number of short paths.

The weight wij ≥ 0 of the edge connecting node i and node j is set to some
meaningful value, representing the closeness of observations i and j. It is chosen
here to be inversely proportional to the Euclidean distance between the two
observations.

Based on the constructed graph it is possible to compute the associated
adjacency matrix A in the standard way, with elements aij = wij if node i is
connected to node j, and 0 otherwise.

Then we associate the state of a Markov chain to every node of the graph
(N in total). To any state or node i, we associate a probability of jumping to
an adjacent node (a nearest neighbor) : pij = aij

ai.
, with ai. =

∑N
j=1 aij .

2.2 The average commute time

Based on this Markov chain, two important quantities are defined : the average
first-passage time and the average commute time.

The average first-passage time m(k|i) is defined as the average number
of steps a random walker, starting in state i 6= k, will take to enter state k for



the first time. Formally, m(k|i) is defined as (see for instance [10]) :





m(k|k) = 0

m(k|i) = 1 +
N∑

j=1
j 6=k

pij m(k|j), for i 6= k. (1)

These equations can be used in order to iteratively compute the first-passage
times.

The second quantity is the average commute time, n(i, j), which is defined
as the average number of steps a random walker, starting in state i 6= j, will
take before entering a given state j for the first time, and go back to i. That
is, n(i, j) = m(j|i) + m(i|j). It was shown by several authors [6], [8] that the
average commute time is a distance measure between any nodes of the graph.

3 Computation of the basic quantities by means of L+

The Laplacian matrix of the graph is defined by L = D − A, where A is the
adjacency matrix of the graph and D = diag(ai.) (with ai. =

∑N
j=1 aij) is the

degree matrix. It is shown in [11] that the computation of the average commute
time can be obtained from the Moore-Penrose pseudoinverse [1] of L, denoted
by L+ :

n(i, j) = VG (ei − ej)TL+(ei − ej), (2)

where ei = [0
1
, . . . , 0

i−1
, 1

i
, 0
i+1

, . . . , 0
N

]T is a basis vector and where VG =
∑

i,j aij

is the volume of the graph.
We easily observe from Equation 2 that [n(i, j)]1/2 is a distance, since it can

be shown [11] that L+ is symmetric and positive semidefinite. It is therefore
called the Euclidean Commute Time (ECT) distance.

If the matrices are too large, the computation by pseudoinverse becomes cum-
bersome; in this case, it is still possible to compute the ECT distance iteratively
using Equation 1.

4 K-means based on ECT distances

Of course, any clustering algorithm (hierarchical clustering, k-means, etc) could
be used in conjunction with the ECT distance. In this work, we illustrate its
potential usefulness by using a k-means algorithm. To this end, we implemented
a k-means method working directly on the distance matrix (see for instance [14]).

Let us denote as {xk}, k = 1, ..., N , the set of observations to be clustered
into c different clusters. We define the ECT distance matrix, ∆, where element
[∆]ij = δ(xi,xj) = n(i, j) is the squared ECT distance between observations xi

and xj .
Each cluster Cl, l = 1, ..., c, is represented by one prototype, pl, which is

chosen among the observations (it is therefore not the centroid, as it is usually the



case with the k-means algorithm). The distance between an observation xk and
a cluster Cl is defined as the distance to the prototype : dist[xk, Cl] = δ(xk,pl)

The within-cluster variance for cluster Cl is defined by

Jl =
∑

xk∈Cl

dist 2[xk, Cl]. (3)

The optimization criterion J is simply the sum of the within-cluster variances
Jl of each cluster Cl :

J =
c∑

l=1

Jl =
c∑

l=1

∑

xk∈Cl

dist 2[xk, Cl]. (4)

Criterion J depends on two elements: the allocation of the observations to
a cluster and the position of the prototypes. It is quite difficult in terms of
computing time to find the best, global, minimum of J . Most of the algorithms
only compute a local minimum of J ; this is the case for our ECT distance k-
means algorithm, which iterates the two basics steps:

(1) Allocation of the observations. The prototypes are fixed. Each obser-
vation xk is allocated to its nearest cluster; that is, xk is assigned to cluster
Cl such that

l = arg min
j

dist 2[xk, Cj ] = arg min
j

δ2(xk,pj); (5)

(2) Computation of the prototypes. We now consider that the allocation
of the observations is fixed (each xk is assigned to a cluster). For each
cluster Cl, we choose a new prototype, pl, among the observations so that
it minimize the within-cluster variance (3) of this cluster. More precisely,
the prototype of each cluster Cl is chosen according to:

pl = arg min
xj

{ ∑

xk∈Cl

δ2(xk,xj)

}
. (6)

The clustering algorithm aims to repeat steps (1) and (2) until convergence
of J to a local minimum. It can be shown that J decreases at each such step
[14]. This clustering procedure based on the ECT distance will be called the
ECT distance k-means.

5 Experiments

In order to evaluate the ECT distance k-means algorithm, it is applied to two
clustering problems, and compared to the classical k-means based on the Euclid-
ean distance. Five artificial data sets (inspired by [9]) are used to illustrate the
ability to detect clusters with arbitrary shapes. We also compare our method
to the normalized cuts [13], since we established in [12] several similarities be-
tween the normalized cuts and the ECT distance. The second experiment aims
to cluster digital characters.
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Fig. 1: Clustering using ECT distance k-means. (a) Rings data set and
its associated connected graph. (b) The multidimensional scaling projection of
the ECT distance matrix on the two first principal axis. (c) Clustering results
using the ECT distance k-means. Clusters are indicated by different symbols
and prototypes by stars. (d) Clustering results using the Euclidean distance
k-means. (e) – (h) Other clustering examples using ECT distance k-means on
artificial data sets. (i) Clustering results using Shi and Malik’s algorithm.



5.1 Experiments on artificial data sets

Figure 1a shows an example of graph construction. We made the arbitrary
choice for every experiments of this paper to link each observation (node) of
the data set to its three nearest neighbors, in addition to the links provided
by the computation of the minimum spanning tree. Actually we observed that
three neighbors are enough to get satisfactory results, in addition to reduce the
computation complexity.

For illustration, the multidimensional scaling projection of the ECT distance
matrix on the two first principal axis is shown in Figure 1b. We observe that
the two clusters are well separated with the ECT distance metric.

The resulting partition obtained by using the ECT distance and the Euclid-
ean distance are shown respectively in Figure 1c and Figure 1d. Both clustering
algorithms are run twenty times with two prototypes (two clusters) and various
random seeds; only the clustering with the minimal total within-class variance
J is retained.

The same experiment is realized with four other artificial data sets (Figures
1e, 1f, 1g and 1h). Figure 1i shows an example of the clustering result obtained
by using Shi and Malik’s spectral clustering algorithm [13].

5.2 Digital characters clustering

The second experiment concerns a digital character clustering problem where
the word “DENIS” is digitalized; the objective here is to retrieve the letters
from the two-dimensional image.

Three data sets are constructed from the digitalized “DENIS”, with various
letter interspaces (see Figure 2a). An example of clustering on medium inter-
space set, obtained by ECT distance k-means, is shown in Figure 2b.

For each of the three data sets the ECT distance k-means and the classical k-
means are respectively repeated twenty times. For each of the twenty clusterings,
the quality of the obtained partition is assessed by comparing it to the optimal
partition where each letter is a cluster (in this case, there are five clusters:
the five letters of “DENIS”). Therefore, the adjusted rand index is computed,
measuring the quality of the clustering (see for instance [5]). Then the adjusted
rand indexes obtained by the twenty clusterings are averaged, in order to obtain
the averaged adjusted rand index.

Figure 2c shows the values of the averaged adjusted rand index for the three
“DENIS” data sets and the two k-means procedures, based on ECT and Euclid-
ean distances. The first data set (label 1 in Figure 2a) contains small letter
interspaces; the second data set (label 2) contains medium letter interspaces,
and the third data set (label 3) contains large letter interspaces.

5.3 Discussion of the results

We observe that the algorithm based on the ECT distances provides good clus-
tering results, both for the artificial data and the character clustering problems.
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Fig. 2: Digital characters clustering. (a) Three “DENIS” sets with various
interspace between letters. (b) Clustering results using the ECT distance k-
means for medium interspace. (c) Comparisons of the averaged adjusted rand
index for the three “DENIS” sets and the two clustering methods.

The classical k-means usually fails to cluster properly when the separation bor-
der between clusters is not trivial. On the contrary, the ECT distance k-means
algorithm overcomes the difficulty and manages to separate the different clusters
for the non-linearly separable, but nevertheless well separated, data sets. The
visualization of the ECT distance matrix projected in a two-dimensional space
by multidimensional scaling (Figure 1b) shows a interesting characteristic of the
ECT distance metric : observations with strong internal cohesion move closer
to their nearest neighbors. On the contrary, observations with few connections
between them tend to be drawn aside.

But what happens if the subgroups are really close ? In this case, many con-
nections can be built between close observations of different groups and can alter
the performances. Indeed, as expected, the clustering performances decrease in
the second experiment when the interspaces between letters get smaller (Fig-
ure 2c). Actually, this experiment illustrates one advantage of using the ECT
distance compared to Euclidean distance: two points, which are close in the
Euclidian space, can nevertheless have a large ECT distance if there are few
paths connecting them. On the other hand, two points that are distant in the
Euclidean space can nevertheless be close in terms of ECT distance if there are
many paths connecting them.

Notice that the application of the normalized cuts proposed by Shi and Malik
on our data sets gives slightly worse results when clusters are close (e.g., Figure
1i).

6 Conclusions and further work

We introduced a new distance measure, called the Euclidean commute time
distance, which allows to retrieve well-separated clusters of arbitrary shapes.
Experiments show that the ECT distance k-means is less sensitive to the shape
of the cluster than the standard k-means based on the Euclidean distance. It



is also interesting to notice that the ECT distance k-means is easy to use since
there is no need to make assumption on the data distribution nor to fix some
parameter values.

The main drawback of this method is that it does not scale well for large
data sets. The distance matrix size is determined by the number of data and
its estimation can be time consuming. However, the Laplacian matrix is usually
sparse: only the information about links between nearest neighbors is kept.

Further work will extend the application of the ECT distance k-means to
more sophisticated clustering problems. We will also continue our comparisons
and investigations of the links between ECT distance k-means and spectral clus-
tering (see [12]).
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