
Self-Organizing Maps Computing on
Graphic Process Unit

Luo Zhongwen1, Liu hongzhi1, Yang Zhengping1 Wu Xincai1*

1- China University of Geoscience(Wuhan) - Faculty of Information Engineering
Wuhan 430074, China

Abstract. Self-Organizing Maps (SOM) is a widely used artificial neural
network (ANN) model. Because of its heavy computation load when the map is big
and inherent parallel, there is a need to apply a parallel algorithm on it. As a SIMD
parallel processor, Graphic processing unit (GPU) shows a fast growing speed than
CPU. And it also provides programmability recently. In this paper, the algorithm
and result of SOM computing on GPU has been given. The result shows that GPU
can make SOM computing much faster than standard CPU. Some design tricks for
improving the efficiency of computing has discussed. Based on the results and
current trends in the development of GPU, it is reasonable to expect that graphic
hardware will widely used in other ANN computing for getting high-performance.

1 Introduction

The Self-Organizing Maps, also called Kohonen feature map (KFM) [6] is a particular
kind of artificial neural network (ANN) model, which consists of one layer of n-
dimensional units (neurons). It is fully connected with the network input. Additionally,
there exist lateral connections through which a topological structure is imposed. For
the standard model, the topology is a regular two-dimensional map instantiated by
connections between each unit and its direct neighbors.

In recent years, the graphic hardware performance is doubled every 12
months which is much faster than CPU’s performance increase which is doubled
every 18 months. And GPU vendors had made it possible to program on it, which
enable us to implement general-purpose computation.
 Bohn[1] describes an SOM calculation method based on OpenGL hardware
speed-up on SGI workstation, which inspired our work to further deploy the
possibility to implement SOM calculation based on PC commodity graphic hardware.
For other related works, Kyoung-Su Oh et al.[4] implements a fast computation of
MLP on GPU, and give an almost 20 time speed up over CPU. Thomas Rolfes[7] gives
an artificial neural network implementation using a GPU-based BLAS level 3 style
single-percision general matrix-matrix product.
 In this paper, our approach detail and result are given. In section 2, we give
the computational model and deploy the possibility to implement a KFM computing
based on PC graphic hardware. In section 3, we give our computation result and
compare the performance increase of GPU over CPU and then discuss some of our
implementation details. In section 4, we give our conclusion and some directions for
further researching.

* This work is sponsored by SRF for ROCS, CUG-Wuhan

2 Computational Model and Implement method

2.1 Computational Model and test on Graphic Card

The KFM takes a two step computation: searching for the best matching unit and
modifying the value according to a distance function of the lateral connections. For
best matching unit search, we usually take a Euclid distance as measure method. The
calculation formula takes as follow:
 || Wb – ξ || ≤ || Wi – ξ || for any i; [1]
Modify the unit value regarding a distance function of the lateral connections.
 Wi

new=Wi
old-εΩ(rb,ri)*(Wi

old- ξ) [2]
 As Bohn described, three OpenGL[8] extension functions were needed, they
are blending, glColorMatrix and glminmax. These functions are fully supported by
SGI workstation, but only partially supported by PC graphic card. For example,
glColorMatrix is not supported by NVIDIA’s card and glminmax is not supported by
ATI’s card. To solve this function “missing” probelm, we can copy the intermediate
result to main memory and calculate the result in CPU. The test result is as follow:

CPU /ms OpenGL Graphic card /ms
120 4000

 Table 1: Computational Time for SOM on CPU and OpenGL

It shows that the performance of PC graphic card can not match that of CPU’s. The
deficiency partially comes from the use of readpixel to copy intermediate result from
video memory and partially comes from the use of drawpixel to activate some of the
computing.

2.2 CG implementation on PC commodity graphic hardware

As discussed in the previous part of this section, some of the OpenGL vender’s
extension functions are not supported by PC commodity graphic card. But recently,
graphic hardware vendors had provided programmability and some high-level
program languages [5] for GPU. In our implementation, we choose Cg [2] (C for
graphic) as our develop environment.
 As described in section 2.1, the calculation contains two steps. Firstly we
need to find the best matching unit (BMU), and then adjust the value according to the
distance from BMU.
 For the BMU computation, we use a two step computing. In the first step, we
calculation similarity as follow:
 c.x = dot((tex2D(texture,coords)-intrain),(tex2D(texture,coords)-intrain));
 c.yz= coords.xy;
The first sentence calculates the Euclid distance of two vectors, here the dot function
calculate the inner product of two vector, and tex2D function looks at the texture table
and return the vector value. The second sentence saves the unit’s coordinate.
 The main difficulty in CG computation is how to find the minimum value
and determine its location, for there is no global variable in CG environment. We use
a multi-pass method to calculate it. So the second step for finding the BMU is shown

as in Fig 1. In each pass we find the minimum value of four units and save the result
in a texture of smaller size. After a few steps, the size decreases to 1, and we can get
the minimum value and its location.

Fig. 1: Scheme for minimum value computing.

After finding BMU, we can adjust the Self-Organize Map according to equation 2.

2.3 Some more implementation detail and lessons

In this section, we will give some implementation tricks and the lessons we learned
during our implementation.
 Firstly, create same fragment program for only one time. For each time we
create a new program, the Cg will compile it, and which is time consuming. We don’t
notice this at first, and the result is really bad, which makes us almost to give up.
 Secondly, if possible, do your best to decrease the number of calculation
passes. In our first implementation, we use the scheme described in previous section.
We find that the main bottleneck is in finding minimum function. We guess that may
because the searching minimum function uses a multi-pass, so we decrease the
number of pass by two schemes. First we combine the value calculation with one pass,
second in the finding minimum function we calculate 16 units instead of just 4 units
that decreases the passes by a factor of two. The result shows in table 2. GPUA is
calculated on ATI card and GPUN is calculated on NVIDIA card. We can see the
performance increase is clear.
 Thirdly, do your best to decrease the data exchange between CPU and GPU.
Usually we can use OpenGL’s PBuffer to save the intermediate result in a texture and
reuse it as a input data. Especially Harris[3] had provided a class Render to Texture to
easy the use of PBuffer. We have used this class in our program.

KFM size 128*128 256*256 512*512

GPUA more pass /ms 366 400 533
GPUA few pass /ms 211 244 511
GPUN more pass /ms 190 640 2889
GPUN few pass /ms 104 256 900

Table 2: comparison between more pass and few pass.

3 Result and Discussion

Our test environment is INTEL P4 2.4G for CPU computing. Based on this PC, we
had using ATI 9550 and Nvidia 5700 for GPU computing. A typical GPU result
shows in Fig 2.

Fig. 2: Typical result for GPU computing.

3.1 CPU and GPU train time and discussion

 We had made a series computation for the training of Self-organize Map.
We choose 80 data to train the SOM and make an iteration to get the average time for
the computation on CPU and GPU. The result shows in Fig 3.
 The result shows that our GPU based implementation is faster than CPU,
especially for large Self-Organize Map. The increasing of computation time is less
than that of CPU. And different GPU had different result, for Nvidia’s card, it takes

the least time for small size SOM like 128*128, but for ATI’s card it takes the least
time for larger size SOM like 256*256. We think that the difference comes from
vendor’s hardware implementation. It seems that ATI’s card takes more time for the
compiling and loading of program and the code is better optimized so computation
time will decrease with more data, and Nvidia’s card takes less time for preparing and
takes more time to computing.

0

500

1000

1500

2000

2500

CPU /ms 122 500 2000

GPUA /ms 211 244 511

GPUN /ms 104 256 900

128*128 256*256 512*512

Fig. 3: SOM training computing time on GPU and CPU

3.2 The difference of graphic hardware vender

Apart from the previous difference, there are other differences happened in different
graphic hardware venders. For example, for the calculation of minimum value, the
following code gives a correct result in ATI card.
 c=tex2D(texture,coords).x<tex2D(texture,coords+half2(0,offset)).x?
 tex2D(texture,coords):tex2D(texture,coords+half2(0,offset));
But the result is wrong in an Nvidia’s card. It may because that the inner parallel
schemes which makes the difference. To work around it, we change the above
sentence to the following logical equivalent one:
 half4 c=tex2D(texture,coords);
 if (c.x>tex2D(texture,coords+half2(0,half_side)).x)
 c=tex2D(texture,coords+half2(0,half_side));
And correct result can be obtained in both cards.

4 Conclusion

In this paper, an implementation of Self-Organize Map on graphic process unit has
described. We try to use the inherent parallelism of commodity graphic hardware to

accelerators the computation of SOM and succeed. The result shows that GPU is
capable for the SOM calculation, the graphic hardware make it possible for an
increasing performance/cost ratio on the area of high-performance computing.

Compared to Bohn’s initial computation on SGI workstation, our implementation
has two benefits. One is our calculation is more precise, for we had use the float point
computing. The other is that we only use a commodity available graphic card, which
is easily available than SGI workstation so can be widely used.

Our implementation on graphic hardware has other implicit benefit too, which is
some future works we hope to do. First we can use a multi-texture or 3-D texture to
save the map and make more general SOM computing without the restriction of the
vector length of 4. We can also do other general ANN computation on GPU, because
GPU provides almost all arithmetic operations, logic operations and some important
mathematic functions. And for the application of neural network on images, it is more
native to make such computing on a graphic hardware.

From above discussion and our test result, we believe as a hardware speedup
method, commodity graphic hardware will become increasingly important to high-
performance computing, and there will be more results appeared in the neural network
computing based on GPU.

References

[1] Bohn, C.A. Kohonen Feature Mapping Through Graphics Hardware. In Proceedings
of 3rd Int. Conference on Computational Intelligence and Neurosciences 1998. 1998.

[2] Femando R. and Killgard, M.J. The Cg Tutorial: The Definitive Guide to
Programmable Real-Time Graphics Addison-Wisley, 2003

[3] Harris, M. http://www.gpgpu.org/developer/, 2003

[4] Kyoung-Su Oh, Keechul Jung, GPU implementation of neural networks, Pattern
Recognition 37, 6, 1311-1314, 2004

[5] Mark, W.R., Glanville, R. S., Akeley, K. and Killgard, M.J. 2003. Cg : A system for
programming graphics hardware in a C-like language. ACM Trans. Graph. 22, 3, 896-907

[6] Teuvo Kohonen. Self-organizing maps. Springer Verlag, New York, 1997.

[7] Thomas Rolfes. Artificial Neural Networks on Programmable Graphics Hardware, in
Game Programming Gems 4,pp373-378, Charles River Media, 2004

[8] Woo, M., Neider, J., Davis, T., Shreiner, D. OPENGL Programming Guide,Addison-
Wisley,1999

