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Abstract.  This research is concerned with using nonlinear dynamics
to greatly enhance the range of possible behaviours of artificial neurons.
A novel neuron model is presented which has a dynamic internal state
defined by a set of nonlinear equations, together with a threshold driven
spike output mechanism. With the aid of spike feedback control the model
is able to stabilise one of a large number of Unstable Periodic Orbits in
its internal dynamics. These orbits correspond to dynamic states of the
neuron each of which generates a unique periodic spike train as output.
The properties of this model are explored through experiments with single
neurons and networks of neurons.

1 Introduction

This paper is concerned with using the rich dynamics of nonlinear systems to en-
hance the range of possible behaviours of artificial neurons. The term behaviour
broadly refers to the information processing activities that neurons engage in,
such as arriving at states of activation, generating firing patterns and so on. A
long term aim of this research is to use these enhancements in neuron behaviour
to overcome some of the limitations found in many artificial neural network
models (e.g. low memory capacity in terms of the ratio of patterns that can be
stored to the number of neurons deployed). A novel Nonlinear Discrete State
(NDS) neuron model is presented which can select from a large range of pos-
sible behaviours. Experimental evidence for these behaviours is presented and
discussed.

Nonlinear dynamical systems are strong candidates in the search for methods
to greatly enhance the range of possible behaviours of artificial neurons. Chaotic
systems continuously generate new patterns of behaviour which could be used
as a basis for neural computation [1]. Furthermore, several methods of chaos
control have been developed which enable the selection and stabilisation of pe-
riodic patterns of behaviour called Unstable Periodic Orbits (UPOs) [2, 3, 4].
Chaotic attractors are densely packed with a theoretically infinite number of dis-
tinct UPOs. Our research is concerned with the possibility that these UPOs be
designated as the set of possible internal dynamic states of a neuron. Although
practical limits on computer models of these attractors (e.g. accuracy of floating
point representations of numbers) may mean that this set of states is not infi-
nite, nevertheless it would be extremely large. We present experimental evidence
that suggests that the NDS neuron can select from an immense number of dis-
tinct UPOs each corresponding to a unique internal dynamic state (see Section
3). Each UPO that is stabilised on the internal dynamics of the NDS neuron
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produces a temporal periodic output pattern of spikes. Experimental evidence
suggests that there is a one-to-one correspondence between distinct UPOs and
unique periodic spike output patterns (Section 3). If this is the case, then the
NDS neuron has at its disposal a very rich range of internal states together with
a vocabulary for communicating these states to other neurons.

2 The NDS neuron

The Nonlinear Dynamic State (NDS) neuron is a novel spiking neuron model
inspired by the Rossler attractor [5]. The NDS neuron has a dynamic internal
state that is modelled by three variables (u(t), z(t) and y(t)) whose behaviours
are determined by the following equations:

( ) Mo : Ul(t) >0 ( )

ui(t+1) = wi(t) + d(v + u; (8) (= (t)) + kui () -] 1
{ +wyi(t — 1) +w;I(t) tui(t) < 0

z(t+1) =x(t) + b(—y(t) — u(t)) (2)

y(t+1) =y(t) + c(z(t) + ay(t)) (3)

0={4 1 upZe g

where u(t) represents the internal voltage of the neuron, z(t) and y(t) are internal
state variables necessary to produce the attractor which governs the chaotic
dynamics of the neuron, 79 is the after-spike reset value for u(t), v is the spike
output, w is the weight of the spike feedback control (see below), w; is the
weight of the external input I(t), and 6 is the firing threshold of the neuron.
a,b,c,d, v,k are the parameters of the system.
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Fig. 1: Phase space plots ((a),(c)) and Time series data ((b),(d))

When w = 0 and w; = 0 (i.e. the feedback control is inactive and there is
no external input - note that unless explicitly stated otherwise w; = 0 for all
experiments) in equation (1), the internal state of the NDS neuron is governed
by the attractor illustrated in Figure 1(a). This figure plots the phase space of
the neuron in the u(t) vs z(t) plane. Figure 1(b) shows part of the corresponding
time series for u(t) and ~(t). To illustrate how the dynamics of equations (1)
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to (4) evolve in time, Figure 1(c) shows a short trajectory in u(t) vs z(t) phase
space representing a brief evolution of the system and Figure 1(d) shows the
corresponding time series for variables u(t) and y(¢). As these figures illustrate,
the NDS neuron fires whenever wu(t) crosses the threshold (< 0) from below.
The firing event at time ¢ is signified by assigning the value 1 to variable ().
After firing, u(t) is reset to no.

In the absence of feedback control (w = 0 in equation (1)) the internal
dynamics and the output (y(¢)) of the NDS neuron are chaotic (i.e. they display
bounded, aperiodic behaviour with sensitive dependence on initial conditions).
A simple control mechanism is applied to the model whenever w > 0 in equation
(1). This spike feedback control mechanism adds the output of the neuron (vy(t))
delayed by a discrete number of time steps 7 to state variable u(t). When spike
feedback control is active the internal dynamics of the NDS neuron are stabilised
into a UPQ, resulting in a periodic spike train for output. An example of such an
orbit is shown in Figure 2(a) and 2(b). In this example the weight of the feedback
w = 0.3 and the delay of the SFC 7 = 150. In this case the UPO stabilised in
the internal dynamics of the neuron (Figure 2(a)) produce a periodic output
consisting of three spikes (Figure 2(b)).
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Fig. 2: A UPO stabilised by spike feedback control.

3 Experimental Results

Preliminary experiments with this model have suggested that the NDS neuron
can stabilize a large number of unique periodic orbits of the kind shown in Figure
2. Small variations in the length of the feedback delay in the range 150 to 300
resulted in the stabilisation of 151 distinct UPOs on the internal dynamics of
the neuron. Each of these UPOs produced a unique periodic spike train as
output. Furthermore, due to the sensitive dependence on initial conditions of
the NDS neuron, a small change in the initial values of the variables x, y and u
will also result in different orbits being stabilized with the feedback spike control
mechanism. The results from a second set of experiments have demonstrated
this. In these experiments the length of the feedback delay 7 is kept constant at
150 and the initial values of state variable u(t) are varied from -0.4 to -0.69 in
steps of 0.01. Small changes in the initial condition for the variable u resulted
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in very different UPOs being stabilized. Furthermore, as with the previous
experiments, the periodic spike trains that are output are unique for each set of
initial conditions.

From these experiments alone it has been shown that the NDS neuron has
access to 151 unique UPOs by varying its feedback delay and 30 unique UPOs
by varying its initial conditions within these narrow ranges. Each of these UPOs
generates a unique periodic spike pattern as output. In other words, the NDS
neuron has available to it a large number of internal dynamic states together
with a ’vocabulary’ (i.e. a time structured neural code) of unique spike trains
with which to communicate these states.

Having demonstrated that the NDS neuron can be in one of a vary large
number of discrete dynamic states with corresponding periodic spike train out-
put, the next step is to consider how such neurons can be connected to form
a functioning network. An essential property of many ANNs is the ability to
reconstruct patterns of activation which have previously been stored through
training. In the case of the NDS neuron this will necessarily involve reconstruct-
ing the UPO on the internal dynamics of the neuron which formed part of the
previously associated pattern. As with most ANNs this reconstruction will need
to be done through the properties of the various connections in the network.
Crucially, it must be possible to reconstruct the UPO via external spike input
to the neuron. Preliminary experiments have suggested this is possible with the
NDS neuron. One such experiment involved a single NDS neuron that was con-
trolled with a spike feedback delay of length 7 = 100. The model was allowed to
run for 1000 time steps without feedback control (w = 0). Control was activated
(w = 0.5) at t = 1001 and the internal dynamics of the neuron stabilized to
period 3 UPO (Figure 3(a)) and the periodic spike output of the neuron was as
shown in Figure 3(c). From ¢ = 3000 the output of the neuron (y) was then
recorded as a binary sequence with y(¢;) = 1 signifying the occurrence of a spike
at time t1, and y(t2) = 0 signifying the absence of a spike at time 5.

At t = 4000 the feedback control was removed from the neuron (w = 0). Then
the recorded binary sequence was presented as external input (I in equations (1))
to the neuron with w; = 0.5. Solely on the basis of the external binary input the
neuron stabilises to the identical UPO which was stabilised when spike feedback
control was being applied (3(b) and Figure 3(d)). This experiment shows that
it is possible to reconstruct a UPO via external input in the absence of feedback
control.

There are two important points to note about this reconstruction property of
the NDS neuron. The first is that, unlike spike feedback control, the reconstruc-
tion of the UPO is not sensitive to initial conditions. The same binary sequence
will stabilise the same UPO regardless of the initial conditions of the internal
state of the neuron. The second important point is that this one-to-one corre-
spondence between internal state and the binary output sequence means that the
sequence is a compressed binary representation of the three dimensional dynamic
internal state of the neuron. The NDS neuron therefore has a large number of
UPOs each with a unique compressed binary representation which can be used
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Fig. 3: The original ((a), (c)) and reconstructed ((b), (d)) UPOs

in the reconstruction of that UPO. It is envisaged that the compressed binary
representations will be stored through the connection weights and delays of the
network in which the NDS neuron operates. We are currently developing net-
work architectures and associated learning mechanisms which will accomplish
this.

An initial approach to constructing networks of NDS neurons was to simply
connect multiple neurons with mutual weighted time-delay connections. As with
the external input I, the weighted inputs from other neurons were summed
and added to internal state variable u(¢). Each neuron in the network had
spike feedback control with the weight w = 0.3 and delay 7 = 100. Several
experiments involving random weights between neurons but with uniform delays
on all connections were conducted. One such experiment involved three neurons
with the weight matrix shown in Table 1. From the weight matrix it can been
seen that neurons A and B have mutual excitatory connections, but both are
connected with inhibitory connections to neuron C. After transitions the network
stabilises to the UPOs shown in Figure 4. These results show that all neurons
in the network stabilise, with neurons A and B stabilising to the same UPO,
but different to that stabilised on C. In other words the weights of the network
strongly influence the dynamics of the neurons and a globally consistent dynamic
state emerges.

4 Conclusion

The results of the experiments presented here demonstrate that the NDS neuron
is able to select from a large number of distinct internal dynamic states (UPOs)
and can communicate these states to other neurons using a vocabulary of unique
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Fig. 4: The UPOs and spike output of a network of three neurons

A B C
A| 03] 02]-02
B| 02]03]-02
C|-02]-02] 0.3

Table 1: The weights of a three neuron network.

periodic spike patterns. The availability of this large number of neuron states
enhances the range of possible behaviours of artificial neurons. Future research
in this area aims to overcome some of the limitations of artificial neural net-
works (e.g. memory capacity) using these enhanced behaviours. Preliminary
results have been presented showing that UPOs can be reconstructed through
external inputs and that small networks of NDS neurons will stabilise to orbits
which have some correlation to the weights connecting them. However, possible
network architectures and associated learning mechanisms for NDS neurons are
the subject of continued research.

References

[1] W.J. Freeman and J.M. Barrie. Chaotic oscillations and the genesis of meaning in cerebral
cortex. In G. Buzsaki et al., editor, Temporal Coding in the Brain, pages 13-37. Springer-
Verlag, Berlin, 1994.

[2] T. Kapitaniak. Controlling Chaos. Academic Press, 1996.

[3] F. Pasemann and N. Stollenwerk. Attractor switching by neural control of chaotic neuro-
dynamics. Network: Computational Neural Systems, 9:549-561, 1998.

[4] Y.Liu M. Kushibe and J. Othsubo. Associative memory with spatiotemporal chaos control.
Physical Review E, 53(5):4502-4508, 1996.

[5] O. E. Rossler. An equation for continuous chaos. Physics Letters, 57A(5):397-398, 1976.

42



