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Abstract. In this paper we first give an introduction to the problem
of prognosis in medicine. The importance of prognosis is highlighted and
a brief summary of some successful applications of neural networks is in-
cluded, together with an analysis of their advantages over the standard
statistical tools. In the second part, we compare the performances of Cox
proportional hazard model and an approach based on artificial neural net-
works constructed for the prognosis of outcome in patients with primary
breast cancer. The data was collected from 32 hospitals in Spain, via the
Spanish group of research in breast cancer within the framework of the
“El Alamo” project. The population was divided into training and test
sets, and the predictive accuracy of the prognosis models (Cox and neu-
ral networks) was compared by determining sensitivities, specificities and
the area under receiver operating characteristic curves (area ROC). The
results show that neural network predictions are much more accurate, in
particular in the early months after surgical intervention.

1 Introduction to Prognosis in Medicine and Neural Net-
works

Prognosis can be defined as an estimation of the probable course of a disease
in a particular patient. It has been always considered an important part of the
medicine process but in general it has attracted less attention than diagnosis.
Prognosis plays a key role in medical decision making, personal decision making,
health policy and medical research [16] .

The choice between different treatments is made by comparing the prog-
noses associated with the respective treatments and while in the past doctors
often took decision on behalf of the patients, nowadays patients are increasingly
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involved and base their decision also on their personal values. From a health
policy perspective prognosis is quite an useful tool as it provides a comparison
for the different treatments and factors influencing it, and thus is a key element
in the task towards optimization of resources. Prognosis in medicine remains
an essential element in modern medical practice as it meets patients needs for
information about their future and provide a rational for taking medical deci-
sions. Standard statistical methods have been partially successful at estimating
individual prognosis and in recent years the introduction and use of artificial
neural networks (NNs) have brought a new perspective in the field [16, 4]

1.1 Standard statistical methods for survival analysis

In prognostic studies in general, the primary outcome of interest is time to an
event such as relapse, progression, death, etc., and this analysis is termed sur-
vival analysis. A survival time distribution can be characterized by its survival
function S(t) defined as the probability of survival at least until time t. An
alternate but related characterization is through the hazard function A(¢) which
is the instantaneous rate of failure at time t. The survival function S(¢) and the
hazard function A(t) are totally related and thus the specification of anyone of
them is enough to determine completely the other.

The Cox regression model, the standard statistical tool in survival analysis, is
a semiparametric regression model. It specifies a model for the hazard function
having the following form:

)\(t) = )\o(t) eXp(ﬂlasl + B1z1+ ...+ ﬁn.’l,‘n)

The function Ag(¢) is called the baseline hazard function and includes all
the time dependency in the model. The x; are the explanatory variables or
covariates, like tumor size, age of the patient, etc. and 3; are the coefficients for
each covariate. It has the advantage of permitting a simple interpretation of the
[ coefficients: a unit increase in a covariate x; corresponds to multiplication of
the baseline function by the factor exp(3;) (if all other covariates are held fixed).
The disadvantage is that, as said before, all the time dependency of the model
is included in the baseline function and thus this implies that the effect of the
covariates is constant in time. Whether this is true from a biological perspective
is an unknown fact in most cases and for the application and validity of the Cox
model an assessment of the proportional hazard assumption should be made.

One particular feature of the data used for prognosis analysis is the existence
of censored data, cases in which the state of the patient after certain point in time
(before the event of interest has occurred) is unknown. Unfortunately, excluding
these cases significantly biases the results and thus can not be excluded. The
Cox proportional hazard analysis [8] is an accepted solution to the problem of
analysing censored data and has become the standard survival analysis statistical
technique. However, the Cox model is mainly used to study the importance of
covariates for survival but it is seldom used to estimate survival times [26, 31].

In order to make predictions of survival for new cases the value of the [
coefficients have to be estimated but also the baseline hazard function has to be
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computed. The estimation of the hazard baseline function is a non-trivial task
and a wrong baseline choice can dramatically affect the results [26].

1.2 Neural Networks in survival analysis

Two aspects make the neural networks more powerful than Cox regression anal-
ysis. One is that the effect of the covariates can be made time dependent by the
introduction of the time as input to the network (see section 2.2.1) and second
that the effect of the covariates might be non-linear and thus these effects can
be captured by the neural network. The main disadvantage of the NNs models
is that they allow little insight on which variables are most influential in the
model and also about the precise relationship between outcome and explanatory
variables.

Neural networks are quite flexible in the sense that they do not need a base-
line hazard function. Different approaches can be taken to predict prognosis
using NN, as they can be used to model the hazard function, and also the
probability of survival at fixed or different times. NNs application require the
selection of an architecture and also of a training algorithm. In general, most
of the architectures used contains a single hidden layer with a number of units
between 3 and 50, according to the complexity of the problem and the chosen
architecture is normally selected by trial-and-error method. Regarding training,
Backpropagation is the standard training algorithm used but in general needs to
be combined with some method to prevent overfitting, as weight-decay or early
stopping [21].

The application of NNs to survival prediction has been in general quite suc-
cessful, normally outperforming the Cox model and thus there have been many
studies reporting their use in medicine prognosis. The previous fact, indicates
the existence of non-trivial non-linear relationships between the covariates that
can not be easily captured by parametric models [26, 6, 31].

Several neural network approaches have been proposed to model survival
data. In some cases (see for example [12, 28, 22, 5, 25]) the prognostic covariates
have been used as inputs to the neural system while the time to relapse is the
output of the neural network. These previous approaches implement a separation
between the dependence on time and on the patient data resulting in non-linear
proportional hazards models. A more efficient representation of time is to include
it as a covariate, and in this case the output of the system becomes an indicator
of relapse or not at a given time. This kind of approach (also refereed as time-
coded models) has been implemented by several authors [10, 9, 24, 27, 1, 3]
and can be interpreted as the discrete time implementation of the proportional
hazards model [26]. Moreover, this kind of neural network model for survival
prediction has proved to be very stable in monthly studies over follow-up periods
of several years [2]. Time-coded models generate a prognostic index that can be
interpreted as conditional probabilities or cumulative probabilities depending on
the preprocessing performed on the input data [11].
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2 Case Study: Survival analysis applied to breast cancer
patients

Decisions as how to treat breast cancer patients after surgery have been con-
tingent on the accuracy of estimating the behaviour and outcome of the disease.
Histological, biochemical and clinical information have demonstrated to have
prognostic utility, however predicting the disease outcome for an individual pa-
tient remains a challenging task.

Using a large database containing data from 3811 patients cases obtained
from 32 different hospitals across Spain (via GEICAM, the Spanish Group in
Breast Cancer Research), we implemented neural networks architectures to pre-
dict the probability of breast cancer relapse and we compared the performance
of the neural networks to the obtained using the standard Cox survival model.
We have also carried a detailed analysis of the importance of including (or not)
different clinical markers as inputs in the neural architectures. The analysis was
carried both for the whole dataset but also limited periods of times were con-
sidered in order to assess the time dependency of the prognostic covariates and
as a way to improve the accuracy of the system by selecting on each interval
the most appropriate variables. It is important to outline that real data sets
with significant large numbers of cases have not been extensively analyzed using
neural networks as most of the works reported in the literature use small data
sets [11].

2.1 The data set

Data were collected from the ”EI Alamo” Project, the largest database on breast
cancer in Spain. The dataset analyzed in this study includes demographics,
therapeutic and recurrence-survival information from 3811 women patients with
operable invasive breast cancer diagnosed in 32 different hospitals belonging to
the Spanish Breast Cancer Research Group (GEICAM) between the years 1990
and 1993. All the patients were characterized for a set of clinical and pathological
variables specified in Table 1. The analysis was restricted to patients with follow-
up time of at least one month, and thirty-four percent of patients were relapsed
in the period of study. The median follow-up (i.e. the time elapsed from the
date of surgery to the last updating of the patient record) was 76 months (1 -
128 months).

2.2 Prognostic models
2.2.1 Artificial neural networks

Feed-forward neural networks can be seen as analogous to regression models,
in which covariates are called inputs, coefficients are called weights, and the
outcome variable is called output. In this work, a three-layer neural network
model (an input layer, with each input node corresponding to a prognostic fac-
tor plus one node for the coded time; a hidden layer; and an output layer)
was constructed with an ad-hoc software developed in C++ and R languages
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Prognostic variables (mnemonic) Range Mean SD Median
Age, years (A) 25 —90 56.21 12.40 57
Tumour size (T) 02-13 2.87 1.64 25
No. Axillary lymph nodes (N) 0-35 2.48 4.23 1
Histological grade (G) 1,2,3 2.04 0.65 NA
Histological type (H) 1,2,3 1.19 0.53 NA
Hormonal receptor status (ER) 1,2 1.72 044 NA
Menopausal state (M) 1,2 1.67 047 NA
Type of treatment (Tr) 0,1,2,3,7, 5.37 3.36 NA
8,9,10,11

Table 1: Summary of patient data: range, mean, SD and median

and backpropagation was the training algorithm When the desired output takes
only two values, as in the case considered in this work (relapse or not relapse)
the cross-entropy error function has demonstrated to have a better performance
[15]. Transfer functions for all neurons in the network were sigmoidal and over-
fitting problems were avoided using a regularization technique known as weight
decay [15]. Weight decay is used to prevent the synaptic weights from exces-
sive growing as this has been demonstrated to improve the generalization ability
[Bartlett, 1997]. The number of neurons in the hidden layer was determined
using a constructive process, in which we consider different architectures with
a number of neurons ranging from 5 to 30 neurons in the hidden layer. We
did not consider larger networks as this led to no further improvement in net-
work performance. Sixteen different combinations of covariates were analyzed
in order to identify the best set of prognostic factors in terms of the accuracy
in the prediction using a validation set. The variables age (A), tumor size (T),
number of axillary lymph nodes (N) and grade of tumor (G), considered as very
significant prognostic factors in clinical standard practice [13, 23, 7] were incor-
porated to every dataset; whereas menopausal status (M), histological type (H),
estrogen receptors (ER) and type of treatment (Tr) were included (or not) in
the sixteen combinations considered. The input data to be fed into the neural
architecture was pre-processed by Gaussian normalization that makes the data
to be normally distributed around 0.5 with standard deviation equals to 1. Data
containing missing values were not considered and outliers with covariate val-
ues 3 standard deviations larger than the mean were also eliminated from the
dataset. For many of the intervals considered and for the general case, we used
the following 5 covariates: A, T, N, G and Tr (see Table 3).

The neural approach adopted in this work lies within those known as time-
coded models, in which the time of follow-up is included as an additional co-
variate. The input vectors are replicated from the first time interval until the
interval previous to the maximum follow-up, setting the survival status to 0 and
the time of follow-up to the mean value of the corresponding interval (5 months,
15 months, etc). Besides, for a patient who has died, data vectors are included
with survival status 1 for all time intervals after the occurrence of the event. The
selective replication of cases for all the patients depending on the censoring sta-
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tus at maximum follow-up makes the output of the network to represent directly
the cumulative relapse probability for a given patient, and it has also the ad-
vantage that a single neural network can be used to obtain predictions for every
time interval. In Table 2 examples illustrating the way in which the data from
censored and non-censored patients was fed into the neural network are shown.
The patient case shown in the first row of Table 2 is an example of a censored
patient with a last follow-up at 53 months. This kind of right-censored data
was replicated in all the intervals preceding the last follow-up setting a negative
value for the outcome, and for the intervals occurring after the time of the last
follow-up the data was no longer considered (as in Kaplan-Meier analysis). The
example in the last row of Table 2 corresponds to a patient who has relapsed
at 27 months and for which the data was replicated setting a negative (using a
numerical value of 0) outcome for the preceding intervals to the time of relapse
while the outcome was set to 1 (positive outcome) for the later intervals (this
was done to make the output of the network to determine the cumulative prob-
ability of relapse). The time used as input for each of the intervals considered
was the mean value of the interval (5, 15, 25, 35, 45, 55 and 93) except when
the precise value of the time of relapse or censorship was known.

0—10 11— 20 21 — 30 31 — 40 41 — 50 51 — 60 61—-MFT
Output 0 0 0 0 0 0 —
Input 5 15 25 35 45 53 —
(months)
Output 0 0 1 1 1 1 1
Input 5 15 27 35 45 53 93
(months)

Table 2: Two examples showing how the data from the patients was fed into the neural
network in the different time intervals considered. The patient in the second row is
an example of a censored patient with a last follow-up at 53 months. The example in
the last row corresponds to a patient who has relapsed at 27 months and for which
the data was entered with negative outcome for the preceding intervals to the relapse
while was considered with positive outcome for the later intervals

2.2.2  Cox regression analysis

Cox regression analysis, a standard statistical tool in survival analysis, was used
as a comparison to the neural network approach performance. The relation-
ships between different prognostic factors and patient survival, as well as the
calculation of the prediction of the patient outcome, were assessed using Cox
proportional hazards regression [8] using the COXPH and PREDICT proce-
dures in R [14, 30]. Variable selection was done using backward and forward
stepwise selection processes (the significance level of entry and permanence of
a given variable in the model was p < 0.05). Tied event times were handled
by the Breslow method and estimation of the survivors functions at event times
were performed using the BASEHAZ statement in R. The assumption of hazard
proportionality for the model was tested using the ZPH procedure in R, which
performs a test for a non-slope in a generalized linear regression of the scaled
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Schoenfeld residuals on functions of time [14]. A p value < 0.05 in the test for
zero-slope, or a non-constant value for the parameters b over time when the
scaled Schoenfeld residuals are plotted, indicated a violation of the proportional
hazard assumptions.

2.2.8 Validation of the prognostic models

In order to estimate the classification accuracy for both neural network and Cox
regression models, a standard technique of stratified nine-fold cross-validation
was used [29]. Firstly, data was divided into 10 subsets of approximately equal
size, and one of them was reserved to test the prediction accuracy for every
prognostic model. Next, each of the left 9 random subsets of the data served as
a validation set (to select an appropriate neural architecture) for the prognostic
model estimated. Then, the prediction accuracy for the models was tested over
the test data subset. Finally, the overall prediction accuracy for the model is
then assessed as an average over 9 experiments. For both models (Cox and
neural networks), a survival curve for each patient in the test set was generated,
obtaining the cumulative probability of survival for every time interval. The
predictive accuracy of the different models was computed using the area under
the ROC curve for censored data [19, 20]. The ROC area (AUC) is an expression
of the probability that a randomly drawn individual from the positive reference
sample has a greater test value than a randomly drawn individual from the
negative reference sample [17, 28]. Areas under the ROC curves (AUCs) of
different models were compared by the Hanley-McNeil procedure [18, 17].

We computed the prediction accuracy of both neural network and Cox re-
gression models in two different ways. First, all the available data was analyzed
together, and second, different ANN models were trained to predict the probabil-
ity of relapse in different time intervals, so different neural architectures can be
used for each time interval considered. By using the cross-validation architecture
selection procedure (see section methods) different neural network architectures
with a single hidden layer with a number of neurons between 5 and 30 were cho-
sen. The networks were trained by backpropagation with learning rate ¢ = 0.05,
combined with a weight decay procedure with parameter A chosen within the
range [1.0e —5, 7.5e— 1] as the value for which the validation error was the lowest
of all the tested architectures.

2.3 Simulation results

When using the artificial neural network model, the best performance was ob-
tained with five input variables that were age, tumor size, number of affected
axillary lymph nodes, grade of tumor and type of treatment, when all data were
considered together independently of the time interval. The area under the ROC
curve (AUC) was 0.8497 (SE = 0.015, 95% CI 0.82-0.87) and a graph of the curve
is plotted in Figure 1.

When Cox regression model was applied the variables that were statistically
significant applying both forward and backward stepwise selection procedures
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were age (OR = 0.988, 95% CT 0.98-0.99, p = 0.001), tumour size (OR =1.135,
95% CI 1.09-1.18, p < 0.001), axillary lymph nodes (OR = 1.082, 95% CI 1.07-
1.10, p < 0.001), grade (OR = 1.399, 95% CI 1.24-1.58, p < 0.001), histological
type (OR = 0.794, 95% CI 0.68-0.93, p = 0.004), type of treatment (OR = 0.957,
95% CI 0.93-0.98, p = 0.002). Hormonal receptors and menopausal status (both
with p > 0.05) were excluded from the full model and no interactions were found
between any of the variables. The area of the ROC curve for the Cox regression
model with the same generalization dataset used for the neural network was
0.7669 (SE = 0.0178, 95% CI 0.74-0.79). The difference between the two ROC
was highly statistically significant (z — score = 3.5276,p < 0.001).

As mentioned above, we also constructed specialized neural architectures
to compute predictions of survival for 7 different time intervals using neural
architectures with a single hidden layer containing between 5 to 30 neurons in
all cases. The results are shown in table 3, where the intervals considered are
indicated in the first column and the results for the Cox and neural networks
models are shown in columns 2 and 3 respectively (mean value & standard error).
For the case of the neural network the different prognostic factors used in each
interval are shown in column 3 and in the last column of table 3 the values of
the z — scores (and related one tail p — values) of the difference between the
predictions of neural network (ANN) and Cox regression models are included.
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Figure 1: ROC curves obtained by using both Cox and neural networks models for
the prediction of breast cancer relapse. The areas under the ROC curve (AUC) were
0.8497 and 0.7669 for the NNs and Cox model respectively, and the difference was
statistically significant at p < 0.001 .

From these results, we can argue that using a single neural network con-
structed to predict the prognosis for all time intervals together (from one month
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Survival period Cox AUC + SFE

ANN AUC £ SE

7 — score

(months) (Prognostic factors)

1-10 0.7964 £ 0.098 0.9952 + 0.0112 2.0054(p < 0.05)
(A, T, N, G, ER, M, Tr)

11-20 0.7309 £ 0.06 0.8908 4 0.0451 2.3085(p < 0.01)
(A, T, N, G, M)

21 -30 0.7305 £ 0.053 0.8051 £+ 0.0470 1.0568(p = 0.14)
(A, T, N, G, Tr)

31 —40 0.7382 £ 0.047 0.7884 + 0.0459 0.7608(p = 0.22)
(A, T, N, G, Tr)

41 — 50 0.7331 £ 0.045 0.7663 £ 0.0446 0.5240(p = 0.30)
(A, T, N, G, Tr)

51 — 60 0.7263 £ 0.043 0.7661 + 0.0411 0.6659(p = 0.25)
(A, T, N, G, H)

61—MFT* 0.6762 £ 0.042 0.8842 £+ 0.0265 4.1884(p < 0.0001)
(A, T, N, G)

21 -60 0.7316 £ 0.048 0.7812 + 0.022 1.5379(p = 0.06)

1—MFT* 0.7669 £ 0.0178  0.8497 £ 0.0153 3.5276(p < 0.001)

Table 3: The results obtained for the predictions of survival by time indicated as areas
under the ROC curves (AUC) for neural networks (ANN) and for the Cox regression
model. In the third column the prognostic factors used for the different intervals for the
case of the neural network are also shown. The maximum follow-up time is indicated
as MFT. In the last columns the Z-score and the corresponding significance value
(p-value) for the difference between the two models are shown

to maximum follow-up time), the predictive accuracy was significantly better
than the one obtained by using Cox regression model (p — value < 0.001). Five
prognostic factors were found to be significative and commons for both neural
network and Cox regression models (A, T, N, G, Tr). Besides, the Cox regres-
sion procedure selected the prognostic factor H. On the other hand, the time
dependent analysis shows (Table 3) that the neural network outperforms signifi-
cantly the Cox model mainly for short time intervals 1 — 10 and 11 — 20 months.
For the periods between 21 — 30, 31 — 40, 41 — 50, and 51 — 60 the difference
between NN and Cox was not statistically significant and this might be because
a reduced number of cases is included in each of these intervals. When the data
was grouped together between the interval 21 — 60 the difference achieves nearly
statistical significance (p — value = 0.06). In the last time interval (61 - MFT)
the neural networks also outperforms the Cox model (difference between the
AUC = 0.109; p — value < 0.0001). Regarding the prognostic factors consid-
ered optimal for the prediction of the relapse using the neural architectures, it is
worthwhile the inclusion of menopausal status (M) for the early intervals 1 — 10
and 1 — 20 months and that in all the cases the optimal neural networks did not
use H as a prognosis covariate.
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3 Conclusion

Prognostic factors in breast cancer provide information to patients about the
recurrence likelihood of the disease and, more important, assist the clinicians
in the selection of appropriate adjuvant treatments for the individual patients.
From a biological point of view, the identification of good prognostic factors
supplies information about the natural history of the disease. Cox multivariate
analysis has been accepted as the gold-standard in methods of prognostic factors
identification. However, Cox multivariate analysis involves that some assump-
tions need to be made (e.g. the relative risk between the hazard rate for two
subjects are constant over time), what makes the Cox application to biological
systems mostly inadequate. In this study, using a classical set of prognostic
factors an approach based on artificial neural networks provides better survival
predictions than those obtained by applying the Cox multivariate analysis. This
better prognosis accuracy is specially relevant in the first time-interval 1 - 10
months, with 0.99 for AUC value, in the second interval under study 11 - 20
months where AUC is 0.89 , for the last interval considered, 61 - MFT, where
the AUC is 0.88. This study continues to confirm the advantage of using NNs
models over the standard Cox regression tool for breast cancer prognosis.
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