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Abstract. We have developed a neural network model that learns the
kinematics of object-dependent reach and grasp tasks with a simulated
anthropomorphic arm/hand system. The network learns to combine multi-
modal arm-related information as well as object-related information such as
object size, location and orientation. We will first describe the learning of the
finger inverse kinematics and then the learning of the grasp configuration.
Finally, to illustrate the performance of the network, we will simulate object-
dependent grasp configurations by the use of a 5-digit hand (4 DoF per digit)
linked to a 7 DoF arm.

1 Introduction

Humans show an extraordinary capability for manipulating and using objects.
For successful grasp of an object, the hand has to be shaped appropriately to match
the form, size and orientation of the object. It has been proposed that specific parieto-
frontal circuits provide a sensorimotor transformation of the object’s visual properties
into a set of motor commands that adapts the shape of the hand to the object to be
grasped [1] [2]. Reach and grasp movements are learned behaviors and they change
their kinematic characteristics during development. It was shown that the number of
action units in reach decreases with age, that their sequencing becomes more
systematic and that reach trajectories get straighter [3]. Similarly, precision grip skill
increases during normal development up to about 10 years of age when control of
grasp forces becomes increasingly anticipatory [4] and when visual information on
object characteristics is fully incorporated [5]. These data suggest that increasingly
complex hand-object interaction progresses through successive stages of
development. The hand is a very complex system as indicated by its high number of
degrees of freedom and biomechanical constraints [6]. In recent years, neural network
based techniques have been used to learn the mapping from objects properties to
grasp configuration [7] [8] [9]. This technique was successfully used in the prediction
of anthropomorphic hand postures for the grasp of various objects [10]. Some of these
neural networks were inspired from neuroscience, either in terms of architecture or in
terms of learning rules [11].

We first present, in part two, the kinematics of the arm-hand model, then in part
three, the neural network and the learning of the finger inverse kinematics as well as
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the learning strategies. Finally, we illustrate the learning model and present the
simulation results of hand postures.

2 Kinematics of the arm-hand model

2.1 Arm model

The 7 degrees of freedom (DoF) arm model is composed of two segments (arm
and forearm) linked by three joints as shown in Figure 1. The shoulder joint has 3
DoF, the elbow joint has 1 DoF and the wrist joint has 3 DoF.

Shoulder Elbow Wrist

Figure 1. Seven degrees of freedom arm model

2.2 Hand model

The hand model is composed of 5 articulated rigid chains representing the
fingers, which are connected to a common body representing the palm. Each finger
has 4 DoF. For the index, middle, ring and little finger, the joint coordinates represent
the following DoF: @: abduction-adduction at the proximal joint, &, & et &: flexion-
extension at the proximal, middle and distal joints. For the thumb, the DoF are ¢ :
thumb rotation at the proximal joint, &;: abduction-adduction at the proximal joint, &
et G flexion-extension at the middle and distal joint. The anthropomorphic
geometrical parameters of the hand were taken from [12].

3 Neural network architecture and learning strategies

3.1 Neural network architecture

The neural network learning algorithm is based on the Locally Weighted
Projection Regression (LWPR), used for incremental learning of nonlinear functions
[13] [14]. It uses locally linear models, spanned by a small number of univariate
regressions in selected directions in input space, to achieve a piecewise linear function
approximation.

Learning object-dependent grasp configurations requires multiple matching units
(i.e. generic neural networks). Matching units correlate (match) multi-modal
information through Hebbian mechanisms [15]. The proposed architecture uses
matching units for the learning of the finger inverse kinematics (one matching per
finger) associated with additional matching units dedicated to the learning of grasp
configurations.
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3.2 Learning of the inverse kinematics

We first determine randomly the 4 DoF of one finger © = (¢, 62, 03, 64) by
taking into account the joint limits. Then by forward kinematics, we obtain the 3D
end effector position V = (X, Y, Z). For the learning of the inverse kinematics, the
input vector is called V' and the output vector @ contains the angular configuration
of the digit (Fig. 2). This represents one learning procedure for each digit: Thumb,
Index, Middle, Ring and Little finger.

Angular Finger
Forward | 4| Configuration
Kinematics ©=(g61,62,03)
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.| Unit —>[E
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Figure 2. Algorithm for learning the inverse kinematics of a single finger by a single
matching unit.
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3.3 Learning of the grasp configuration

We have simulated three types of objects: blocks, cylinders and spheres of
different size. The learning of grasp configurations is based on the previous learning
step that determines the angular configuration of the digits for a given target or
contact point.

The learning of the grasp configurations (angular digit configuration) depends
on object-specific and heuristically determined contact points on the surface of the
three objects. Three novel matching units ‘MU Shape’, one for each object type, have
been introduced to establish the relation between object-related properties (type and
size) and angular grasp configuration (Fig. 3). In order to learn the relation between
the object-related properties and the grasp configuration of the five fingers, we define
an input vector ‘Shape’ [Dim = (L, I, h)"]. For the block, L, / and & correspond
respectively to the length, the width and the height. For the sphere, / corresponds to
its radius, L and 1 are not given. For the cylinder, L determines its length, # its radius,
and 1 is not given. Minimal and maximal size varied between 40 and 80 mm. The
output of the model is a vector of size 20, which contains the grasp configuration of

the five fingers.
Thumb
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Figure 3. Algorithm for learning grasp configurations.

63



ESANN'2005 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 27-29 April 2005, d-side publi., ISBN 2-930307-05-6.

4 Simulation results

4.1 Finger inverse kinematics results

Here we present the simulation results which concern the learning of the inverse
kinematics for each finger. Fig. 4 shows the five learning curves (Mean Squared
Error, MSE) corresponding to each of the five matching units. Learning saturates at
about 5000 iterations.

£

- Finger Positional error
(mm) SD

: Thumb 3.9 1.6

ga Index finger 2.2 1.0

B Middle finger 2.4 1.1

0 Ring finger 2.3 1.0

S Little finger 23 1.0

Figure ;llgjez‘lrgnlng curves. Table 1. Positional error (mm) for each finger

To evaluate the efficiency of the neural network, we used the following
procedure. We input to the neural network the desired fingertip position and calculate
from the obtained joint angles the actual fingertip position. The positional error
corresponds to the norm of the vector from the desired position to the actual position.
Table 1 shows the mean positional error in mm and the standard deviation (SD)
obtained with a test set of 1000 different configurations. The results are acceptable to
have a good approximation of joint angles (small positional error).

4.2 Results on grasp configurations

Figure 5 shows the learning curves for the three matching units ‘MU Shape’ that
relate object properties to the grasp configuration for the block, the cylinder and the
sphere. Learning converges quickly to sufficient error levels (at (2000 iterations).
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Figure 5. Learning curve for the grasp configuration of the Cube, Cylinder and
Sphere.
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To illustrate grasp configurations, Fig. 6 gives several examples of an
appropriate hand shape for grasping a sphere, a block and a cylinder. The wrist
position and orientation relative to the object have been pre-defined.

Figure 6. Examples of learned object-dependent grasp configurations.

5 Conclusion

We have shown that a modular neural network architecture composed of generic
‘matching units’ based on Hebbian learning can learn object-dependent grasp
configurations for a simulated 20-DoF kinematics hand system. This is done in two
successive learning steps. The network is based on 5 matching units, each of them
learns independently the inverse kinematics of one finger. Then in a second step, the
acquired inverse kinematics is used in combination with three novel matching units to
learn in relatively few training iterations the appropriate grasp configurations for three
different objects. This mimics in a highly simplified way the step-wise ontogenetic
development of human grasp.
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