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Abstract. Many applications in signal processing need an adaptive al-
gorithm. Adaptive schemes are useful when the statistics of the problem
are unknown or when facing varying environments. Nonetheless, many
of these applications deal with classification tasks, and most algorithms
are not specifically thought to tackle these kinds of problems. Whereas
Fisher’s criterion aimed to find the most adequate direction to discrim-
inate classes in a stationary setting, the newly proposed On-line Fisher
Linear Discriminant (OFLD) is able to adaptively update its parameters
maintaining its discrimination goal. The algorithm has been tested in an
equalization problem for several conditions.

1 Introduction

Adaptive filtering is a fundamental tool in many signal processing applications,
such as system modeling, noise and echo cancellation, or channel equalization,
among many others [4]. Adaptive schemes are suitable in scenarios where the
statistics of the filtering problem are not completely known, or, specially, when
these statistics are time-varying, given the fact that the proposed solution is
refined when more data are available, forgetting also the oldest patterns, that
do not longer reflect the current characteristics of the filtering problem.

The adaptation of an adaptive filter is carried out with the objective of
minimizing a cost function, usually the quadratic difference between the output
of the filter and a reference signal (resulting, for instance, in the well-kwown
Least Mean Squares (LMS) [5] or Recursive Least Squares (RLS) methods [2]).
Nonetheless, in many applications the real aim of the filter is to discriminate
between a finite number of classes (i.e., to predict to which class a new sample
belongs to), and in these cases minimizing the quadratic error is only an indirect
manner to achieve the desired goal.

Fisher Linear Discriminant (FLD) [1] lies on a cost function which is a mea-
sure of class separability. However, up to this time, it has only been used to
design classifiers in stationary settings. In this paper, we propose to adapt on-
line the required statistics to provide FLD with adaptive capabilities, obtaining
the so-called On-line FLD (OFLD). The resulting scheme is specially suitable
for classification tasks where adaptability is a mandatory issue.

The rest of the paper is organized as follows: in the next section we briefly
review FLD. Section 3 is dedicated to introduce our approach, explaining how
classification accuracy and adaptability can be put together by means of OFLD.



Section 4 is devoted to some experiments in an adaptive channel equalization
environment, that show the interest and potential of the new adaptive method.
Finally, conclusions and further work are presented in section 5.

2 Fisher’s Linear Discriminant

In a binary class problem, FLD linearly projets d-dimesional data onto a one-
dimensional space, so that an input vector x is projected onto

y = wT x (1)

where w are the projection weights. FLD seeks an optimal direction for class
separability by maximizing a function which represents the difference between
the projected class means, normalized by a measure of the within-class scatter
along the direction of w. This is known as the Fisher’s criterion [1]:

J(w) =
(m2 − m1)2

s2
1 + s2

2

(2)

mj and sj , with j = 1, 2, being the mean and the within-class covariance of
projected class Cj , respectively. It can be easily shown that a more appropriate
expression for Fisher’s criterion can be derived by defining the between-class
covariance matrix

SB = (m2 − m1)(m2 − m1)T (3)

where
mj =

1
Nj

∑
x∈Cj

x (4)

Nj being the number of samples belonging to class Cj . Furthermore, total
within-class covariance matrix can be defined as

SW = S1 + S2 =
∑
x∈C1

(x − m1)(x − m1)T +
∑
x∈C2

(x − m2)(x − m2)T (5)

This way, (2) can be rewritten as

J(w) =
wTSBw
wT SW w

(6)

Then, by equating to 0 the gradient of (6) with respect to w, we can conclude
that this expression is maximized with the FLD

w ∝ S−1
W [m2 − m1] (7)

where, for classification purposes, scalar factors have been dropped because we
are only interested in the direction of w and not in its norm.



3 On-line Fisher Discrimination

Aforementioned FLD formulation (7) is non-adaptive, being unsuitable for prob-
lems like channel equalization or pattern recognition in varying environments.
In this section we propose an adaptive version of FLD, that lies on an on-line
updating of the mean of the within-class covariance matrix.

To estimate adaptively each mean we will calculate the exponential average
of the input samples xj(n) belonging to class j:

m̂j(n) =
1 − λm

1 − λn
m

n∑
i=1

λn−i
m xj(i) (8)

where λm is a weighting factor. The quotient that premultiplies the summation
serves to cancel the effect in the total sum of introducting factor λm. Taking
λm less than 1 and considering n >> 1 we can approximate

m̂j(n) ≈ (1 − λm)
n∑

i=1

λn−i
m xj(i)

= (1 − λm)
n−1∑
i=1

λn−i
m xj(i) + (1 − λm)xj(n)

= λmm̂j(n − 1) + (1 − λm)xj(n)

(9)

Similarly, each term of the total within-class covariance matrix (5) is also
varying with time and can be calculated recursively whenever x(n) belongs to
class j

Ŝj(n) = λSŜj(n − 1) + [x(n) − m̂j(n)][x(n) − m̂j(n)]T (10)

where λS , slightly smaller than 1, is a weighting factor that ensures ŜW (n) is
corrected at every instant paying more attention to recent samples. So, the total
within-class covariance matrix is simply given by

ŜW (n) = Ŝ1(n) + Ŝ2(n) (11)

We could likewise update between-class covariance matrix

ŜB(n) = [m̂1(n) − m̂2(n)][m̂1(n) − m̂2(n)]T (12)

although this is only necessary to compute the Fisher’s cost function but not
the discriminant. Therefore, Fisher’s criterion becomes time-dependent

J(w, n) =
w(n)T ŜB(n)w(n)

w(n)T ŜW (n)w(n)
(13)

As we actually want to maximize expression (13) with respect to w(n), equa-
tion (7) is easily extended to

w(n) ∝ Ŝ−1
W (n)[m̂2(n) − m̂1(n)] (14)



which main computational difficulty is to calculate the inverse of ŜW . Luckily,
it can be recursively updated by means of the matrix inversion lemma 1. Let
P(n) = Ŝ−1

W (n), then

P(n) = λ−1
S P(n − 1) − λ−2

S g(n)(x(n) − m̂j(n))T )P(n − 1) (15)

where x(n) is the class j input at time n which mean is m̂j(n) and g(n) is
defined as a gain vector

g(n) =
P(n − 1)(x(n) − m̂j(n))

λS + (x(n) − m̂j(n))T P(n − 1)(x(n) − m̂j(n))
(16)

Supposing means are known or estimated by means of (9), the OFLD algo-
rithm is shown in Table 1. It can be easily shown that the computational cost
of the algorithm is O(N2), like RLS.

1.- Initialization:
m̂1(0) = 0, m̂2(0) = 0, P(0) = δ−1I, wFisher(0) = 0

2.- For n = 1, 2, 3, . . .

m̂j(n) = λmm̂j(n − 1) + (1 − λm)x(n); supossed x(n) ∈ Cj

Π(n) = P(n − 1)(x(n) − m̂j)
g(n) = Π(n)

λS+(x(n)−m̂j)T Π(n)

P(n) = λ−1
S (I − λ−1

S g(n)(x(n) − m̂j(n))T )P(n − 1)
wFisher(n) = P(n)(m̂1(n) − m̂2(n))

Table 1: On-line Fisher Linear Discriminant Pseudocode

4 Experimental Results

Adaptive channel equalization usually has to cope with Intersymbol Interference
(ISI) problems, which represents some of the worst obstacles for high speed com-
munications. Equalizers are typically built using an adaptive filter and designed
to approximately invert and track time-varying channel distortions [3]. On-line
equalizers are updated sample by sample and need a training phase where a
training sequence, known by both the transmitter and receiver, is used to design
a filter which inverts the effects of the unknown channel. Then, during the de-
cision oriented phase, the error between the equalizer’s output and the symbol
decision is generally used to adapt the filter, which is able to track changes in the
channel as long as these occur at a sufficiently low speed. This is the case of LMS
and RLS equalizers that feedback the quadratic error. However, OFLD equalizer
works in a different manner, feedbacking its own symbol decision, which is used
to decide which estimated mean needs to be updated at each iteration.

1(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1
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Fig. 1: Bit Error Rate versus equalizer
tap length in a steady-state problem
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Fig. 2: Bit Error Rate versus equalizer
tap length in a non-steady-state prob-
lem

Both algorithms have been compared in Figure 1 that presents the Bit Error
Rate (BER) versus the receiver’s tap length obtained by OFLD and RLS equal-
izers in a problem with a stationary channel hc = 0.2+ 0.5z−1 − 0.1z−2 + z−3 +
0.3z−4 + 0.1z−5, Gaussian noise and SNR = 9 dB. Parameters are λm = 0.99
and λS = λRLS = 0.999 while the training sequence has 500 samples and the de-
cision oriented phase works with 104 samples. All results are averaged over 100
runs. As it can be seen, no relevant differences exist between both algorithms in
this situation. However, when the channel is time-varying, performances can be
rather different. For the time-varying problem we have chosen the Random Walk
channel hc(n) = hc(n − 1) + q(n) where the entries of q(n) are i.i.d. Gaussian
values. The power of changes (POC) in the channel is measured by the trace
of E{q(n)q(n)T }, being E{·} the expectation operator. For the example in
Figure 2 we have selected POC = 2.4e − 5, λm = 0.99 and λS = 0.95. Note
that in this case we have selected a lower value for λS as a consequence of the
higher adaptation necessity to track the channel. As it can be seen in Figure 2,
OFLD outperforms RLS with the difference being more significative for adaptive
equalizers with a high number of taps.

5 Conclusions

An adaptive approach to Fisher’s criterion has been presented. Its discrimina-
tive character makes it specially suitable for problems in which detection and
classification tasks must be accomplished. Its capability to adapt to varying en-
vironments has been tested by means of an equalization setting, showing how, in
the examples, the algorithm performance is less sensitive to gradient noise and
can be better in tracking situations without increasing the computational effort.
Future work will be addressed to better understand and explore the effects of
the relation between free parameters and to test the algorithm in more complex
situations and applications.
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