
The Architecture of Emergent Self-Organizing
Maps to Reduce Projection Errors

Alfred Ultsch and Lutz Herrmann

Philipps University - Dept. of Mathematics and Computer Science
Marburg - Germany

Abstract. There are mainly two types of Emergent Self-Organizing Maps
(ESOM) grid structures in use: hexgrid (honeycomb like) and quadgrid
(trellis like) maps. In addition to that, the shape of the maps may be
square or rectangular. This work investigates the effects of these different
map layouts. Hexgrids were found to have no convincing advantage over
quadgrids. Rectangular maps, however, are distinctively superior to square
maps. Most surprisingly, rectangular maps outperform square maps for
isotropic data, i.e. data sets with no particular primary direction.

1 Introduction

Emergent Self-Organizing Maps (ESOM) may be regarded as a non-linear pro-
jection technique using neurons arranged on a map. Preservation of topography
of the high-dimensional input data onto the map is a primary aim of ESOM
projections. There are mainly two types of ESOM grid structures in use: hex-
grid (honeycomb like) and quadgrid (trellis like) maps. In addition to that, the
shape may be chosen as square or rectangular. The performance of these map
types are evaluated with Zrehen’s Measure [12] for backward projection errors
and a new defined measure for forward projection errors: Minimal U-Ranking.

2 Emergent Self Organizing Maps

This section reports the basic notations of SOM and ESOM [4]. Readers familiar
with SOM may skip this section. A data space D ⊂ �n is a metric subspace with
distance measure d : D×D → �

+. The training set E = {x1, ...xk} ⊂ D consists
of input samples presented during the SOM training algorithm. The map space
M is a low-dimensional manifold embedded in �l, l < n, with a map distance

Fig. 1: Quadgrid vs. hexgrid map structures.



measure md. The Self-Organizing Map (SOM) is regarded as a set of neurons I.
A neuron i ∈ I is a tuple (wi, pi) consisting of a reference vector wi ∈ W and a
position pi ∈ P . The reference vectors W ⊂ D are used for vector-quantization
purposes, whereas the positions P ⊂ M are used for vector-projection purposes
m : D → P , m(x) = pbm(x) with bm(x) = argmini∈I d(x,wi). The positions
of the neurons are chosen such that for each neuron i ∈ I there is a set of
equidistant neighbours NM (i) ⊂ I. This gives P the form of a regular grid in M .
The most popular variants of grids are two-dimensional hexgrids (six immediate
neighbours) and quadgrids (four immediate neighbours), i.e. see Figure 1.

The average of all data distances of a neuron’s reference vector wi to the
reference vectors {wj : j ∈ NM (i)} of its immediate neighbours is called U-
height. A visualization of all U-heights for a given SOM is called U-matrix [7].
Most popular visualizations for U-matrices in two-dimensional map spaces are
grey level or landscape pictures (see [10]). In the published applications of such
SOM, two main types of SOM can be distinguished: first, SOM in which each
neuron represents a cluster of input samples. These SOM can be thought of
as a variant of the k-means clustering algorithm (see [3]). In these SOM, the
number of neurons corresponds to the number of clusters assumed in the input
data. Usually, this number is very small (≤ 20). In contrast to that, SOM may
be used as tools for visualization of structural features of the data space. The
structural features of the data space are usually visualized using U-Matrix or
P-Matrix techniques [10]. A characteristic of this paradigm is the large number
of neurons, usually several thousands (≥ 4000) of neurons. These SOM allow the
emergence of intrinsic structural features of the data space on the map. They
are called Emergent Self-Organizing Maps (ESOM) [8].

3 Measurements of topography preservation

There are two kinds of topographical errors with regard to ESOM projections:
first, a pair of similar data points (x, y) is assigned to a distant pair of posi-
tions (m(x),m(y)) = (pi, pj) on the map. This means that d(x, y) is small and
md(m(x),m(y)) is large. This type of error is called a forward projection error
(FPE). Second, a pair of close neighbouring positions pi, pj is the image of a
pair of distant data points (x, y) = (m−1(pi),m−1(pj)) in the data space. This
is called a backward projection error (BPE). In the following, topography preser-
vation refers to preservation of topography by the bijective mapping m : W → P ,
m(wi) = pi and m−1(pi) = wi that connects reference vectors and map space
positions (see also [1]). There are regions in the data space where the probability
density function becomes very small or even vanishes. These regions are called
gaps. Gaps divide a data set into several classes of coherent elements. Gaps of the
data space usually lead to mismatching distance-based neighbourhoods in data
and map space, NM (i) �= ND(i) for i ∈ I, even if the topography is preserved
perfectly. Therefore, topography preservation measures should distinguish be-
tween gaps and BPE. The most popular published measurements of topography
preservation of ESOM are: Topographic Product, Topographic Function, C-



Measure, Minimal Pathlength, Minimal Wiring, Zrehen’s Measure, Topological
Index and Kaski’s Trustworthiness Measure. For an overview see [1, 11]. All
measures, except Topographic Function and Zrehen’s Measure [12], are based
on evaluation of distances or rankings of distances between pairs of neurons in
the data space and on the map space. Therefore, these measures are subjective
to location, scaling and variance of the input data. The Topographic Function
works only if the training set E is sufficiently dense compared to the set of refer-
ence vectors W (see [1]). Zrehen’s Measure is invariant to gaps but measures only
BPE. In addition to Zrehen’s Measure, a new gap-invariant FPE measure, called
Minimal U-Ranking in analogy to Minimal Wiring, is defined in the following
section.

4 The Minimal U-Ranking Measure

In order to avoid mismatching distance-based neighbourhoods of neurons in data
and map space, the so-called U-distance is proposed as distance measure for the
map space. Let PATHij be the set of all arbitrary map space paths between
neurons i, j ∈ I. The data space length of such a path is denoted pathdistance.
The udistance(i, j) for neurons i, j ∈ I is defined as follows:

PATHij = { (i1, ..., in) : n ∈ � \ {0, 1}, i1 = i, in = j, ik+1 ∈ NM (ik) }

pathdistance(i1, ..., in) =
n−1∑

k=1

d(wik
, wik+1)

udistance(i, j) = min
q∈PATHij

pathdistance(q)

U-distances are minimal-length paths in terms of data distances on the low-
dimensional flexible net that is formed by the neurons in the data space. U-
distances are used to define a rank-based topography on the set of neurons: Let
(udistance(i, i1), ..., udistance(i, in)) be the ordered sequence of all U-distances
towards an arbitrary neuron i ∈ I for all neurons in {i1, ..., in} = I and
udistance(i, ik) ≤ udistance(i, ik+1) for k = 1, ..., n − 1. Then
uranki(j) = r ∈ {1, ..., n} is the position of udistance(i, j) in this sequence,
which means ir = j. The Minimal U-Ranking measure is defined as follows:

mur(i) =
∑

j∈ND(i)

uranki(j)

Obviously, the Minimal U-Ranking rates the vector-projection’s scattering of
neigbourhood ND(i) onto the map space1. An additional normalization scheme
may be used to scale the resulting values between 0 and 1, where 0 points to
perfect neighbourhood preservation (see [2]). Gaps of the data space would
influence the Minimal U-Ranking only if md was used instead of udistance. The
Minimal U-Ranking rates the FPE of ESOM and combines well with Zrehen’s
Measure for BPE with regard to gaps in the data space.

1Usually the neigbourhood ND(i) is chosen as a k ∈ � sized data space neighbourhood
ND

k (i) around neuron i, e.g. let k be ≈ 5% of the size of I.



5 Data Sets

In order to demonstrate effects on a wide variety of different types of training set
topographies, we have used four synthetic training sets and two real life data sets.
The synthetic data sets are called Hexa, Atom, Ball and Chainlink. All data sets
may be obtained on http://www.mathematik.uni-marburg.de/~databionics.
Hexa: Three-dimensional points in 6 well separated clusters of equal size.
Chainlink: 1000 three-dimensional points in two separated clusters of equal
size; the clusters are not separable by a linear manifold. Atom: 800 three-
dimensional points that are arranged in two separated classes of equal quantity:
nucleus and shell. Ball: 800 three-dimensional points that are arranged in an
isotropic set of points. Iris: the well known data set of Fisher. Oliveoils: 8 fat
acids of 572 olive oils produced in nine different regions of Italy.

6 Experiments

Borderless ESOM with a toroid topology [10] are used for all experiments. Four
different kinds of maps with nearly the same number of neurons are considered:

hexsquare 64 × 64 = 4096 neurons with a hexgrid map
hexrectangular 50 × 82 = 4100 neurons with a hexgrid map
quadsquare 64 × 64 = 4096 neurons with a quadgrid map
quadrectangular 50 × 82 = 4100 neurons with a quadgrid map

The learning rate is kept constant at 0.1 and the neighbourhood kernel has a
regular bubble shape (see [2]). The neighbourhood kernel sizes were chosen such
that the number of modified neurons are the same for each ESOM. All data sets
are standardized. For each data set and ESOM type, the training was repeated
200 times. The resulting distributions were analyzed using Pareto Probability
Density estimation (PDE) [9]. It was found that the median of the BPE and
FPE of the repeated trainings can serve as an appropriate description of the
average error. To rate the significance of differences, the Kolmogorov-Smirnov
(KS) test on a 5% alpha level was used.

7 Results

Figure 2 shows the relative improvement by using different map architectures.
For hexgrid vs. quadgrid maps, there is no general effect on the number or
intensity of BPE. Six out of twelve KS tests show that quadgrid maps lead to
significantly bigger error values whereas four tests show that quadgrid maps lead
to smaller error values. In contrast, hexgrid maps lead to less or less intense FPE
in nearly all cases (eleven of twelve tests). Seven out of twelve KS tests show a
significantly decreasing number or intensity of BPE errors if one uses rectangular
instead of square maps. Five tests show opposite results. This means that there
is no significant effect on BPE that can be attributed to the shape of the ESOM.
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Fig. 2: Changes of median for (a) forward and (b) backward projection errors.

8 Discussion

Most measures for topography preservation misinterpret gaps of the data space
as backward projection errors (BPE) of the ESOM. Therefore, we used Zrehen’s
Measure for BPE since it is gap invariant due to its definition based on the
voronoi-tessellation of the data space. In order to measure forward projection
errors (FPE) without a distortion by gaps in the data space, the Minimal U-
Ranking measure was introduced here. Comparing hexgrid and quadgrid maps,
there is no significant difference in BPE. Regarding FPE, hexgrids are slightly
better. This may be attributed, however, to the Minimal U-Ranking itself: grids
with more connections between adjacent nodes usually lead to shorter minimal-
length paths between arbitrary nodes. Therefore, U-distances are, in general,
smaller on hexgrid maps than they are on quadgrid maps. Despite of this,
hexgrids showed no consistent advantage over quadgrids. The advantage of an
elongation of one of the sides of the map is, however, convincing. This elongation-
effect may be explainable by the so-called automatic dimension selection (see [5]).
Scott compared the effect of using a hexgrid instead of a quadgrid for histograms



in two dimensions [6]. He found that the effect is rather small: quadgrids are 2%
less effective than hexgrids. This coincides with our observation that the error
reduction is much bigger using rectangular vs. square maps than using hexgrid
vs. quadgrid maps.

9 Summary

In our experiments, ESOM built on rectangular map spaces produced smaller
projection errors compared to ESOM with square map spaces. The usage of
hexgrids vs. quadgrid maps, however, showed no or even worsening effects.
The simplicity of subsequent display and processing with of-the-shelf programs
therefore favours the usage of quadgrid maps. Still, there is an open question
concerning isotropic data. Isotropic data sets have no principal component axis
with prominent variance. Despite of this, topographic errors occur less often or
less intense on rectangular shaped ESOM compared to square maps. Further
research is necessary to understand the reasons behind this effect. Our upcoming
research aims at determining hints for the right edge-to-edge ratio for different
data sets. The isotropic data demonstrated that using the ratio of the first
principal components is not sufficient for all data sets.
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