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Abstract. In this paper, the problem of an optimal transformation of the
input space for function approximation problems is addressed. The trans-
formation is defined determining the Mahalanobis matrix that minimizes
the variance of noise. To compute variance of the noise, a nonparametric
estimator called the Delta Test paradigm is used. The proposed approach
is illlustrated on two different benchmarks.

1 Introduction

In this paper, the problem of an optimal transformation of the input space for
function approximation problems is addressed. In the general context of function
approximation from data, we have observations {x;,y;}*, € R? x R and the
problem consists of reproducing the underlying functionality y; = f(x;) + €;
between the inputs and the output variables. A formally analogous problem is
the analysis of a time series where, having at disposal the observed temporal
evolution {z;}1¥, € R of some input variable, we want to describe its future
output approximating the object: zisny = f(@i<n) + €.

These two common tasks in machine learning share the necessity to select
only a subset of the input variables that is truly relevant for modeling the system
that generated the observations (for an exhaustive review, cfr. [8]). In addition,
since the final model should not achieve an accuracy smaller in magnitude than
level of noise in the observations, an independent model to estimate the noise
(the terms €; and €; mentioned above) can also be defined.

In this work, we propose the application of a nonparametric noise estimator
known as the Delta Test paradigm [4] in order to determine an optimal trans-
formation of the input subspace that enforces appropriate variable selection. In
our approach, the critical step of variable selection is approached as a subprolem
in the general framework of scaling the inputs. The transformation is performed
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determining the Mahalanobis matrix [6] that satisfies the optimality criterion of
minimizing the variance of the noise between the input and the ouput variables.
As such, the illustrated methodology is suitable for function approximators that
make explicit use of the metric properties of the embedding space of the observa-
tions: e.g., k-Nearest Neighbors (k-NN), Self-Organizing Maps (SOM), Support
Vector Machines (SVM) and Radial Basis Functions (RBF) models.

The paper is organized as follows. In Section 2, we illustrate the adopted
methodology and briefly recall the basic properties of the considerd algorithms.
Section 3 supports the presentation reporting the preliminary results of the pro-
posed technique with two benchmarks in the domain of nonlinear regression and
time series prediction using k-NN function approximators.

2 Methodology and Algorithms

Input scaling is a usual preprocessing step in both function approximation and
time series analysis. In scaling, weights are used to reflect the relevance of
the input variables to the output to be estimated. That is, scaling seeks for
redundant inputs and assigns them low weights to reduce the corresponding
influence on the learning process. In such a context, it is clear that variable
selection is a particular case of scaling: by weighting irrelevant variables by
zero we are, indeed, enforcing selection. For the sake of brevity, only the main
concepts referring to the regression problem are presented here. Nevertheless,
the extension to time series analysis is trivial.

2.1 Transforming the Input Space with Mahalanobis Matrices

The Mahalanobis distance dm (x;, x;) of two d-dimensional observations {x;,x;}
is a proximity (or ’similarity’) measure defined on the dependencies between the
embedding dimensions [6]. Formally, dm(xi,x;) extends the traditional Eu-
clidean distance d(x;,x;) = [(x; — x;) T (x; — x;)]'/? transforming the observa-
tions’ subspace by means of a (d x d) full-rank matrix M:

dna(xi,%5) = 1/ (x5 — %) TM(x; — x;) (1)

From Equation 1, it is evident that: i) if M =T then the original Euclidean
metric is retained, and ii) if M is a (d x d) diagonal matrix then the original
space is simply rescaled according to the diagonal elements. Matrix M is also
symmetric and semi-definite positive, by definition. Moreover, the Mahalanobis
matrix M can be factorized as:

M=S'S (2)

with a matrix S that can linearly map the observations into the subspace spanned
by the eigenvectors of the trasformation. The learned metric in the projection
subspace is still the Euclidean distance, that is:
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dM(XZ‘,Xj) = \/(Xl — Xj)TM(Xi — Xj) = \/(le — SXj)T(SXi — SXj) (3)

where, by restricting S to be a non-square (s x d, with s < d) matrix, the trans-
formation performs both a reduction of the dimensionality and the scaling of the
original input subspace. The resulting subspace has an induced global metric of
lower rank suitable for reducing the 'curse of dimensionality’.

2.2 Nonparametric Noise Estimation using the Delta Test

The Delta Test [4] is a nonparametric paradigm for estimating the variance of
noise (€, in the following). In its basic formulation, the Delta Test exploits
the ’similarity’ in the behaviour of the noise of two closeby observations. In
details, for a given d-dimensional observation x; and some close neighbor xJ,
the expected Mean Square Error on the corresponding outputs (y; and y;) will
estimate the variance of the noise as the distance §(x},x;) tends to zero:

var(e) B3 (4} — 91)? I, — il < 8).for 6 — 0 @)

Despite this approach appears to be promising in its formulation, it fails
when the size of the data is small if compared to the complexity of the underly-
ing function and noise distribution. An improvement of the Delta Test can be
achieved exploiting the k-Nearest Neighbors distances between the observations
in the input subspace and the corresponding outputs. This leads to an approach
called here Nonparametric Noise Estimation. According to [4], an estimate for
the variance of the noise is represented by the intercept of a linear regression
line between the average of k nearest distances in the input subspace and the
corresponding average of k nearest distances in the output subspace. Formally,
the nearest distances can be espressed as:

56) = =3 e 7 o QNZHyNNx“ “ul’ ©

i=1

where, the index NN(x;,k) refers to the k-th neighbor of x;. A proof (also
referred to as Gamma Test) based on a generalization of the Chybechov inequal-
ity and the properties of the k-Nearest Neighbors is reported in [3]. The proof
depends on the assumptions: i) the Jacobian and the Hessian of y = f(x) exist,
ii) the 3-rd to 4-th moments of the noise distribution exist, and iii) the noise is
independent from the inputs.

In [3], it is demonstrated that the variance of noise is estimated as the inter-
cept of the vertical line 6(k) = 0 and the regression line between (k) and 6(k),
where k£ > 1. In this paper, we applied the Delta Test that assumes k& = 1.
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2.3 Function Approximation using k-Nearest Neighbors

The k-Nearest Neighbors function approximator [2] is a simple, but powerful
method. In its basic formulation, it assumes that observations that are closeby
(or, again, ’similar’) in the input space have corresponding outputs that are
also close. The Euclidean distance is a natural measure typically used to assess
the proximity. For a given input observation x;, we estimate the output y; by
averaging in the neighborhood, so that:

k
> urG) (6)
j=1

where, P(j) is the index number of the j-th nearest neighbor x; and k is the
number of neighbors used in the estimation. We use the same neighborhood size
for every observation, a global k, which is to be determined beforehand. As for
the validation of k, the Leave-One-Out resampling method is adopted [1].

9i =

|

3 Simulation Results

3.1 The Stereopsis Regression Problem

The Stereopsis dataset [5] provides a benchmark for regression problems. The
number of input variables is equal to 4, and we used 192 samples for training,
and 300 for testing the model. The output of the SRP is depicted in Figure 1.
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Fig. 1: Learning data set of the Stereopsis regression problem.

First, the k-NN regressor is built in the original input subspace. The NMSFE
obtained on the test set (NMSE;.s) is equal to 0.16.

Secondly, the diagonal Mahalanobis matrix (equivalent to scaling) is op-
timized using the Genetic Algorithms Toolbox from Matlab. The achieved
NMSE;.s is reduced to 0.05.

Finally, a Mahalanobis matrix equivalent to a projection into a 1-dimensional
(s = 1) subspace is found to be optimal: the corresponding NMSFE;.4; is 0.01.

Figure 2a represents the output plotted against the 1-dimensional projection
of the original input space. Figure 2b presents also the corresponding estimates
on the test set obtained with the k-NN approximator.
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Fig. 2: Output of the Stereopsis test dataset: a, left) plotted against the optimal
projection of the inputs, b, right) plotted against the predictions using k-NN.

3.2 The SantaFeA Time Series

As for the time series prediction, the Santa Fe Laser Dataset [7] was used (Figure
3). Tt consist of a 10000 temporal observations of a 1-dimensional quantity from
a far-infrared laser in chaotic regime. 1000 observations are used for training,
and 9000 for testing.
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Fig. 3: SantaFeA times series, 1000 values training set.

First, a k-NN is built using a 12-dimensional regressor input. The NM S E}.
that is achieved is 0.088. Secondly, the optimal diagonal Mahalanobis matrix
(equivalent to scaling) is determined. The achieved NMSFE;.s is then 0.027.
Finally, a Mahalanobis matrix equivalent to a projection into a 5-dimensional
(s = 5) subspace is found to be optimal: the achieved NMSFE; 4 is 0.026.
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Fig. 4: Prediction of the test set of SantaFeA using the projected inputs.
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Figure 4 represents the N M SFE,.s; using the projected inputs. In Figure 5 a
recursive prediction of the first 100 values of the test set is also represented.
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Fig. 5: Recursive prediction on the test set of SantaFeA.

4 Conclusions

In this paper, a nonparametric noise estimator is used to optimizing the Maha-
lanobis matrix for both scaling and projection of the input subspaces for function
approximation. The method has been tested on two different benchmarks using
the k-NN approximator.

The results obtained on both benchmarks show that the accuracy of the es-
timations is improved by scaling the inputs (the diagonal case). Furthermore,
if also the projection is performed, even better results are achieved. The com-
putational time of the optimal scaling was found to be approximately 1 minute.
Conversely, optimizing the projection is demanding (around 100 times longer).
This is due to the larger number of variables and the optimization technique.

As further work, alternative optimization methods will be investigated as well
as data with higher dimensionality and non homogeneous characteristics. Also
different nonlinear models, like LS-SVM and RBF network, will be investigated.
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