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Abstract. Response surfaces are a powerful tool for both classifica-
tion and regression as they are able to model many different phenomena
and construct complex boundaries between classes. Nevertheless, the ab-
sence of efficient methods for obtaining manageable response surfaces for
real-world problems due to the large number of terms needed, greatly un-
dermines their applicability.

In this paper we propose the use of real-coded genetic algorithms for over-
coming these limitations. We apply the evolved response surfaces to clas-
sification in two classes. The proposed algorithm selects a model of mini-
mum dimensionality improving the robustness and generalisation abilities
of the obtained classifier. The algorithm uses a dual codification (real and
binary) and specific operators adapted from the standard operators for
real-coded algorithms. The fitness function considers the classification er-
ror and a regularisation term that takes into account the number of terms
of the model.

The results obtained in 10 real-world classification problems from the UCI
Machine Learning Repository are comparable with well-known classifica-
tion algorithms with a more interpretable polynomial function.

1 Introduction

Models based on response surfaces (RSs) are able to explain a wide variety of
phenomena. The expression that defines a RS is a polynomial of degree G on
each one of the input variables [1] [2]. So, the functions are of the form:

f(x1, x2, . . . , xn) = c0 +

n
∑

i=1

cixi + . . . +

n
∑

i1,i2,...,iG=1

ik≤ik+1

ci1i2...ig
xi1xi2 . . . xig

, (1)

where G is the degree of the model, xi the input variables, n the number of
inputs, and ci the coefficients. For instance, for a quadratic RS (degree 2) the
expression becomes:

f(x1, x2, . . . , xn) = c0 +

n
∑

i=1

cixi +

n
∑

i,j=1

cijxixj . (2)

The main problem we face when using RSs in real-world problems is the num-
ber of terms. Even for a RS of degree 2 or 3, and a small number of inputs, the
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number of terms is unmanageable large to deal with for most optimisation algo-
rithms. In this way, the search space is too large and classical search algorithms,
such as Levenberg-Marquardt [3], are frequently trapped in local minima, need
long training times, and achieve poor results.

In such complex, noisy, non-differentiable, multi-modal and deceptive search
spaces, evolutionary computation is a very good alternative [4] to classical search
methods. In this paper we develop a real-coded genetic algorithm to evolve RSs
that overcomes many of these problems.

If we want to use a RS and real-coded genetic algorithms to model any
phenomenon we need a chromosome with as many genes as coefficients the model
has. The number of coefficients depends on the number of variables and the
degree of the polynomial. For example, in the model of eq. 2 the individuals
have 3n + 1 genes. Figure 1 shows an individual that represents a RS of degree
2 and 3 variables.

Fig. 1: Response surface of degree 2 and 3 input variables.

The robustness proved by RSs when applied to several problems together
with their capacity to establish complex classification boundaries is the rationale
behind our application of RSs to classification tasks.

2 Evolutionary response surfaces

Interpretability is a highly desirable property of any model. Simplicity is also
a very important property. A simpler model is more interpretable, needs fewer
patterns to adjust its coefficients, and its generalisation ability is usually better.
In our algorithm we enforce the selection of simpler (with fewer terms) and
accurate models. Each individual is codified with a gene for each coefficient of
the model. This gene is formed by two different parts. On the one hand, there is
one bit that represents the presence/absence of the term in the model. On the
other hand, there is real value that represents the value of the coefficient for the
corresponding term in case the term is present. Figure 2 shows an individual
that represents a RS of degree 2 with 3 variables codified as explained.

This representation scheme is not enough, by itself, to enforce expressions
with a minimum number of terms. In order to obtain the desired effect of
preferring smaller polynomials we must include a term in the fitness function
that rewards simpler models. In this way, our problem becomes an optimisation
problem of two objectives: the accuracy of the model and the number of terms.
Due to the fact that we have only two objectives we have opted for an unique
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Fig. 2: Modified individual to allow the selection of the simplest model.

fitness function that is a lineal combination of two terms weighted by a coefficient
given by the researcher. The fitness function, F , is given by:

F = (1 − β)Ferror + β ∗ Fcompl, (3)

where Ferror is the error term, and Fcompl is the complexity term, and β is a
adjustable coefficient, 0 ≤ β ≤ 1. The exact form of the two terms can be
defined in different ways.

To classify a pattern we evaluate the function induced by the polynomial.
If the value is greater than 0, the pattern is classified to the class labelled +1,
otherwise to the class labelled −1. The result of applying the genetic algorithm
is a binary classifier with a minimum number of terms within the family of
polynomial functions and able to distinguish between two classes.

2.1 Genetic algorithm

The evolution of the population is carried out using a standard genetic algorithm.
With a population size of N individuals, each generation PdN individuals of the
population are copied to the new population, PcN are reproduced by crossover,
and Pm are copied and undergo mutation. The values of these four parameters
must be fixed by the user.

Each individual is codified by a gene formed by two parts. The first one
codifies the real value of the coefficient of the term, and the second one is a se-
lector that shows the presence/absence of the term in the model. Conceptually,
we are working with a hybrid model that includes binary and real-valued val-
ues. In order to simplify the implementation, we have considered all the values
real-valued. The selectors take values in the interval [0, 1], and a term is not
considered in the model if its corresponding selector is below 0.5.

As we have explained above, the fitness function consists of two terms: the
first one is the classification accuracy of the model, and the second one is the
complexity term, that is bigger as the number of terms, nT , becomes smaller.
The expression for the fitness is given by:
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F = (1 − β)
Patterns correctly classified

Number of patterns
+ β

(

1 −
nT − nTm

nTM
− nTm

)

, (4)

where nTM
and nTm

represent, respectively, the maximum and minimum number
of coefficients of the model. This is a monotonous fitness function that only
achieves the maximum value, 1, if the classification accuracy is 100%, and the
number of terms is nTm

.
The number of genes of each individual depends on the degree of the RS

chosen to perform the classification. In the experiments reported we have used
RSs of degree 2.

2.2 Crossover operator

The proposed crossover operator is an adaptation of BLX-α [5]. We have used
non-uniform mutation. These two operators are designed for real-coded genetic
algorithms and have been adapted for our dual scheme. The adapted BLX-α uses
two parents, β1 = {(s1

1
, c1

1
), . . . , (s1

p, c
1

p)} and β2 = {(s2

1
, c2

1
), . . . , (s2

p, c
2

p)}, with p

genes each one and representing two RS models with p coefficients. As we have
explained each gene represents a term and a selector that tells whether the term is
present, s

j
i , and the value of the coefficient, c

j
i . The two parents generate two de-

scendants βd1 = {(sd1

1
, cd1

1
), . . . , (sd1

p , cd1
p )} and βd2 = {(sd2

1
, cd2

1
), . . . , (sd2

p , cd2
p )}.

The basic idea of the modification is that the genetic material of the best parent
will have a higher probability of being inherited by the offspring. In this way,
each gene of the two descendants, (sd1

i , cd1

i ), and (sd2

i , cd2

i ), is obtained by the
algorithm depicted in Figure 3.

Data: Two genes: (s1
i
, c1

i
) and (s2

i
, c2

i
), from two parents β1 and β2 with fitness F1 and F2

respectively.

Result: Two genes: (sd1

i
, c

d1

i
) and (sd2

i
, c

d2

i
).

if round(s1
i
) = round(s2

i
) then

s
d1

i
= s

d2

i
= round(s1

i
)

(cd1

i
, c

d2

i
) = Apply BLX-α over (c1

1
, c2

i
).

else

Obtain n1 and n2 randomly in {1, 2} with probability F1

F1+F2
of having value 1,

and probability F2

F1+F2
of having value 2.

(sd1

i
, c

d1

i
) = (sn1

i
, c

n1

i
)

(sd2

i
, c

d2

i
) = (sn2

i
, c

n2

i
)

end if

Fig. 3: Genes of the two descendants of the adapted BLX-α crossover

In this way, the descendants inherit the terms common to both parents,
and the coefficients of these common terms are obtained by means of a BLX-α
operator. The terms that are present only in one of the parents are inherited
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with a higher probability if the parent where they are present has a higher fitness
value.

Standard non-uniform mutation is applied to the individual considering all
the values as real numbers.

3 Experiments

For testing the validity of the proposed model we have selected 10 datasets from
the UCI Machine Learning Repository. Each set of available data was divided
into two subsets: 75% of the patterns were used for learning, and the remaining
25% for testing the generalization of the RSs. For each problem we run the
algorithm 10 times using the following parameters:

Population 500 individuals
F β = 0.5
Operators Duplication Pd = 0.2 Tournament selection

Crossover Pc = 0.6 Tournament selection
Adapted BLX-α (α = 0.5)

Mutation Pm = 0.2 Random selection
Non-uniform mutation (b = 5)

Stop 500 generations
We have compared our model with three well-known classification methods:

a support vector machine (SVM) [6] with a Gaussian kernel, C4.5 classification
algorithm [7], and a cascade-correlation neural network [8].

Table 1 shows the results in terms of test error for these three standard
methods of classification and the RSs. The table shows the generalisation error
of the different algorithms and the number of terms of the RSs. In boldface is
shown the best results for each problem. The best result is obtained by means
of a t-test at a confidence level of 95%.

Table 1: Summary of test errors for three standard methods of classification and
the response surfaces of degree 2. The best result for each problem is highlighted
in boldface.

Dataset Standard methods Response surfaces
SVM C4.5 Cascade Error #Coefs.

breast-cancer 0.4226 0.3380 0.6020 0.3099 6.9
cancer 0.0345 0.0340 0.0400 0.0247 3.0
german 0.4000 0.3320 0.4144 0.3316 728.5
heart-c 0.4605 0.2500 0.1465 0.2408 43.7
heart 0.4559 0.2210 0.1598 0.1691 5.6
hepatitis 0.2369 0.1580 0.1000 0.1658 16.3
liver 0.3721 0.3840 0.4725 0.3488 3.0
pima 0.2240 0.2550 0.2590 0.2573 3.2
sick 0.0891 0.0100 0.0669 0.0568 31.6
vote 0.0556 0.0650 0.0614 0.0639 5.4

We can see how the RSs perform comparatively well. They are able to achieve
significantly better results for 4 of the 10 problems. There is also interesting
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to note that the obtained polynomials have few terms, with the exception of
german problem, due to the large number of inputs. Furthermore, we must
take into account that no local search algorithm is used. We believe that these
results would be improved after the addition a local search algorithm that we
are currently developing. This local search algorithm will be implemented as a
parametric mutation operator.

4 Conclusions

In this paper we have shown how real-coded genetic algorithms offer a very
interesting approach for using RSs for classification. RSs are a powerful tool for
regression and classification but their applicability is undermined by the lack of
efficient algorithms for optimising their parameters. We have shown that the
structure of the polynomial and its parameters can be adjusted using a genetic
algorithm. The evolution of both, parameters and structure, is achieved by the
implementation of a dual codification scheme. Specific genetic operators have
been developed for this codification.

We have proposed a fitness function that considers not only the accuracy
of the classification, but also the simplicity of the obtained model. This fitness
function yields simpler models that improve their interpretability and generali-
sation error.

The proposed model has been compared with three well-known classification
algorithms with comparable performance. We can state that our model performs
in this preliminary formulation, at least as well as these standard methods.
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