
Robust Local Cluster Neural Networks

Ralf Eickhoff1 and Joaquin Sitte2 and Ulrich Rückert1 ∗

1- Heinz Nixdorf Institute - System and Circuit Technology
University of Paderborn - Germany

2- Smart Devices Lab - School of Computing Science and Software Engineering
Queensland University of Technology - Australia

Abstract. Artificial neural networks are intended to be used in fu-
ture nanoelectronics since their biological examples seem to be robust to
noise. In this paper, we analyze the robustness of Local Cluster Neural
Networks and determine upper bounds on the mean square error for noise
contaminated weights and inputs.

1 Introduction

Neural networks are used for function approximation of any continuous func-
tions [1, 2]. Especially, basis function networks are utilized since their response
function has mathematically well defined behavior. However, multilayer per-
ceptrons are intended to model biology and, therefore, it is assumed that the
characteristic of robustness is adopted by its artificial equivalents [3, 4].

Robust architectures will be needed in future technology trends because in-
formation processing will become more susceptible to noise due to shrinking
dimensions and signal amplitudes. Estimating the impact of noisy inputs and
parameters is essential to establish robust systems operating in noisy environ-
ments. In this work, the equicontinuity and robustness of the Local Cluster
Neural Networks, a multilayer perceptron approximating local basis functions,
is analyzed.

2 Local Cluster Neural Network (LCNN)

Here, we give only a brief summary of the LCNN. A detailed description of the
architecture can be found in [1]. The idea of the LCNN is to combine sigmoid
functions in such a way that they only respond to a finite region in the input
space. This is accomplished by first constructing a ridge function for every input
signal, by pairing two sigmoids. The ridge function can be described as

l(�w,�r, k1, �x) = σ(k1, �wT (�x − �r) + 1) − σ(k1, �wT (�x − �r) − 1) (1)

The orientation and width of the ridge is determined by the orientation of
�w and its length, respectively. The position of the ridge is given by the position
vector �r. The sigmoid is chosen to be the logistic function with steepness k1

σ (k1, x) =
1

1 + e−k1x
(2)
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A local function is obtained by adding the ridge functions of all the compo-
nents in the input signal vector. All ridges have a different orientation, but the
same center

f
(

�W,�r, k1, �x
)

=
n∑

i=1

l(�wi, �r, k1, �x) (3)

where �W is a n×n matrix made out of n ridge (column) vectors �wi. This function
has a bump around the common center �r and ridges emanating to infinity in as
many directions as there are input dimensions. These ridges have to be removed
to make the function local. Application of a properly biased sigmoid σo to the
function f

(
�W,�r, k1, �x

)
cuts off the ridges smoothly

L
(

�W,�r, k2, �x
)

= σo

(
f
(

�W,�r, k1, �x
)
− b
)

(4)

A local cluster network consists of an array of local cluster functions all
receiving the same inputs. The network output is a weighted sum of the local
cluster outputs and describes a set of functions

S =

{
ym(�x)

∣∣∣∣ym(�x) =
m∑

ν=1

ανL
(

�Wν , �rν , �x
)

, m∈IN,�rν ∈ IRn, �Wν ∈ IRn×n

}
(5)

3 Equicontinuity and Robustness

The equicontinuous property of a function set is an important feature to produce
a stable approximation which means that two slightly different inputs produce
only slightly different output behavior. Therefore, only small errors occur at the
output if the inputs are contaminated by noise and, furthermore, the nonequicon-
tinuity results in an unstable approximation meaning that large discrepancies are
possible while providing nearly identical values at the input.

Consequently, if the property of equicontinuity is fulfilled by a neural network
the whole network is expected to be noise immune. If the inputs or weights are
contaminated with noise the network response will differ only slightly in contrast
to the ideal output behavior. The equicontinuous property is defined as [5, 6]

Definition 1 Let χ be a compact metric space with metric d, and let S be a
nonempty subset of C(χ). By definition, if f is a member of S then f is con-
tinuous, that is, for each ε > 0, there exist δ > 0 such that d(x, y) < δ ⇒
|f(x)−f(y)| < ε. S is said to be equicontinuous if for each ε a δ(ε) can be found
that serves at once for all functions f in S.

3.1 Input Space

To prove the equicontinuous property in the input space the difference between
two slightly different input vectors have to be determined

|ym(�x) − ym(�y)| =

∣∣∣∣∣
m∑

ν=1

ανL
(

�Wν , �rν , �x
)
−

m∑
ν=1

ανL
(

�Wν , �rν , �y
)∣∣∣∣∣ (6)
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Since (6) is differentiable the mean value theorem can be applied

|ym (�x) − ym (�y)| =
∣∣∣∇ym

(
�ξ
)
· (�x − �y)

∣∣∣ (7)

where the gradient can be determined as

∂ym (�x)
∂xk

=
m∑

i=1

αi
∂Li(�x)
∂xk

=
m∑

i=1

αiσ
′
o (f(�x) − b)

∂f(�x)
∂xk

=
m∑

i=1

αiσ
′
o(·)

n∑
j=1

∂lij
∂xk

=
m∑

i=1

αiσ
′
o(·)

n∑
j=1

wijn (σ′(·) − σ′(·)) (8)

and (8) is the k-th component of the gradient.
Furthermore, the maximum of the derivative of both sigmoids can be evalu-

ated as
lim
x→0

σ′(x) =
1
4
k1, lim

x→0
σ′

o(x) =
1
2
k2 (9)

Using the mean value theorem, the triangle inequality and the maximum of
the sigmoids equation (7) can be evaluated

|ym (�x) − ym (�y)| ≤
n∑

ν=1

∣∣∣∣∣∣
m∑

i=1

αiσ
′
o(·)

n∑
j=1

wijν (σ′(·) − σ′(·))
∣∣∣∣∣∣ d (�x, �y) (10)

≤
n∑

ν=1

∣∣∣∣∣∣
m∑

i=1

k2αi

2

n∑
j=1

k1

4
wijν

∣∣∣∣∣∣ d (�x, �y) (11)

≤ k1k2

8

n∑
ν=1

m∑
i=1

n∑
j=1

|αiwijν | d (�x, �y) = ε (12)

⇒ δ =
8ε

k1k2

∑n
ν=1

∑m
i=1

∑n
j=1 |αiwijν | (13)

As a consequence of (12) the equicontinuous property is not valid for the
LCNN in the input space, since relation (12) must be consistent to Definition
1 for all functions of set S defined in (5). As a result of equation (12) and
(13) the parameter ε and δ are depending on the weights αν and wijν . Again,
these weights are based on the function which should be approximated by the
neural network and, consequently, both parameters (ε, δ) are not independent of
the function. Thus, as the MLP and the RBF network the LCNN has not the
equicontinuous property in the input space [5, 7].

But, if the weights are constrained by

|wijν | ≤ T ∧ |αν | ≤ B (14)
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equation (12) reduces to

|ym (�x) − ym (�y)| ≤ k1k2

8

n∑
ν=1

m∑
i=1

n∑
j=1

B · T · d (�x, �y) (15)

=
k1k2

8
n2mBT = ε (16)

⇒ δ =
8ε

k1k2n2mBT
(17)

Consequently, the LCNN achieves the equicontinuous property in the input
space if the constraints of (14) are provided. Therefore, the mean square error
(mse) can be calculated if it is assumed that the inputs are contaminated with
Gaussian noise with finite variance. The mse can be evaluated as

mse ≤ k2
1k2

2

64

⎛
⎝ n∑

ν=1

m∑
i=1

n∑
j=1

|αiwijν |
⎞
⎠

2

nσ2
n (18)

where n identical noise sources (inputs) contribute to a noisy output and σ2
n

denotes their variance.
Constraining the weights gives an upper bound to the mse

mse ≤ k2
1k

2
2

64
n4m2B2T 2nσ2

n =
k2
1k

2
2

64
n5m2B2T 2σ2

n (19)

3.2 Parameter Space

Let assume that the weight space is endowed with a metric, W1 and W2 are two
distinct points in the weight space and d (W1,W2) denotes their distance. Then
the equicontinuous property can be written as

∣∣ym

(W1
)− ym

(W2
)∣∣ ≤ (∣∣∣∇wym(�ξ)

∣∣∣+ ∣∣∣∇�rym(�ξ)
∣∣∣+ ∣∣∣∇αym(�ξ)

∣∣∣) d
(W1,W2

)
(20)

where ∇w denotes the gradient with respect to the weights, ∇�r with respect to
the centers and ∇α with respect to the output weights.

Each gradient can be determined

∣∣∣∇wym(�ξ)
∣∣∣ =

m∑
μ=1

n∑
i=1

n∑
j=1

∣∣∣∣αμ
∂Lμ

∂wμij

∣∣∣∣ (21)

≤ k1k2

8

m∑
μ=1

n∑
i=1

n∑
j=1

|αμ| |xj − rμj | (22)

=
k1k2

8

m∑
μ=1

nαμ‖�x − �rμ‖1 (23)
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and
∣∣∣∇�rym(�ξ)

∣∣∣ ≤
m∑

μ=1

n∑
j=1

|αμ|
∣∣∣∣ ∂Lμ

∂rμj

∣∣∣∣ (24)

≤
m∑

μ=1

n∑
j=1

|αμ|k1k2

8

n∑
i=1

|wμij | (25)

=
k1k2

8

m∑
μ=1

|αμ|
n∑

j=1

n∑
i=1

|wμij | (26)

and also ∣∣∣∇αym(�ξ)
∣∣∣ =

m∑
μ=1

|Lμ| ≤
m∑

μ=1

1 = m (27)

From applying (23), (26) and (27) to (20) it follows for the equicontinuity in
the weight space

∣∣ym

(W1
)− ym

(W2
)∣∣ ≤

(
k1k2

8

m∑
μ=1

nαμ‖�x − �rμ‖1+

k1k2

8

m∑
μ=1

|αμ|
n∑

j=1

n∑
i=1

|wμij | + m

⎞
⎠ d

(W1,W2
)

= ε

(28)

and δ can be determined as

δ =
ε

k1k2
8

∑m
μ=1 nαμ‖�x − �rμ‖1 + k1k2

8

∑m
μ=1 |αμ|

∑n
j=1

∑n
i=1 |wμij | + m

(29)

As a consequence of (28) the LCNN does not have the equicontinuous prop-
erty in the weight space since the parameters ε and δ depend on the weights αμ

and wμij and, moreover, the Manhattan distance between the input vector and
the centers. Since these weights are dependent on the actual function which has
to be approximated ε and δ also depend on the function. Thus, the LCNN is
not equicontinuous in the weight space.

Providing the constraints of (14) and also restricting the Manhattan distance

‖�x − �rμ‖1 ≤ C (30)

equation (28) can be further evaluated

∣∣ym

(W1
)−ym

(W2
)∣∣ ≤(k1k2

8
mnBC +

k1k2

8
mn2BT + m

)
d
(W1,W2

)
(31)

respectively
δ =

ε
k1k2

8 m · n · B · C + k1k2
8 m · n2 · B · T + m

(32)
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and achieving an equicontinuous network in the weight space.
Furthermore, the mse can be determined if Gaussian noise contaminates all

parameters of the network, and this leads to

mse≤
⎡
⎣k1k2

8

⎛
⎝ m∑

μ=1

nαμ‖�x − �rμ‖1 +
m∑

μ=1

|αμ|
n∑

j=1

n∑
i=1

|wμij |
⎞
⎠+ m

⎤
⎦

2

m(n2+n+1)σ2
n

(33)
where, at all, m · (n2 + n + 1) parameters contribute to a noisy output.

By constraining all the parameters (14) and also the Manhattan distance
(30) the mse has an upper bound

mse ≤
(

k1k2

8
m · n · B · C +

k1k2

8
m · n2 · B · T + m

)2

m(n2 + n + 1)σ2
n (34)

4 Conclusion

We have shown the equicontinuity and robustness of the LCNN under certain
restrictions. Moreover, upper bounds on the mean square error are determined
for noise contaminated inputs and weights.

Without these restrictions the LCNN is not equicontinuous and not noise
immune. But restricting the trained weights by an upper resp. lower bound and
the Manhattan distance between the input vectors and the centers this leads
to a noise immune network. Fortunately, technical implementations provide
these bounds naturally due to their limited resolution or memory and its num-
ber representation. But as a result of the limited resolution of digital systems
quantization noise contaminates the inputs and weights whereas analog systems
have to face thermal and flicker noise. However, the network response can be
determined and guaranteed by our analysis.
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