
Reducing Policy Degradation
in Neuro-Dynamic Programming

Thomas Gabel and Martin Riedmiller
Neuroinformatics Group

University of Osnabrück, 49069 Osnabrück, Germany

Abstract. We focus on neuro-dynamic programming methods to learn state-action
value functions and outline some of the inherent problems to be faced, when per-
forming reinforcement learning in combination with function approximation. In an
attempt to overcome some of these problems, we develop a reinforcement learning
method that monitors the learning process, enables the learner to reflect whether it
is better to cease learning, and thus obtains more stable learning results.

1 Introduction

The basic idea behind reinforcement learning (RL) is to let (software) agents acquire a
control policy on their own on the basis of trial and error by repeated interaction within
their environment. Aiming at the application of RL to complex, real-world problems
with large and continuous state spaces, it becomes indispensable to make use of a value
function approximation mechanism. In this work, we will focus on neuro-dynamic
approaches (NDP) for that task and employ neural networks as approximation archi-
tecture [2]. Though most theoretical results regarding the convergence behavior of RL
algorithms do not generally hold in the presence of value function approximation, im-
pressive results could be obtained in the past, e.g. Tesauro’s TD-Gammon.

However, the sequences of control policies found during learning with function
approximation generally do not converge. A typical phenomenon in the NDP context,
as reported in a number of publications, is that the approximated value function, from
which the control policy is induced, improves during the initial iterations and, after
having reached the vicinity of the optimum, tends to oscillate. Therefore, we introduce
a reinforcement learning method that confers a better control over the learning process,
enables the agent to know if it is better to stop learning, and thus clearly reduces the
oscillations of the agent’s performance obtained.

2 Approximate Neuro-Dynamic Programming

RL problems can be modelled as Markov Decision Processes (MDP). An MDP consists
of sets of states S and actions A, a stochastic transition function p(s, a, s′)=psas′ that
tells how likely it is to end up in state s′, when taking action a in state s, as well as
a function of immediate costs c(s, a) that arise when taking action a in state s. If the
actions available depend on the current state the system is in, the set of actions is usually
denoted as A(s). The goal of learning within an MDP is to find a policy π :S→A that
minimizes the expected accumulated costs. Q learning [9] is a suitable RL method
to learn a value function, if there is no explicit model of the environment available. It
updates directly the estimates for the values of state-action pairs according to Q(s, a) :=

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

653

(1 − γ)Q(s, a) + γ(c(s, a) + minb∈A(s′)Q(s′, b) where the successor state s′ and the
immediate cost c(s, a) are generated by simulation or by interaction with a real process.
For the case of finite state/action spaces where the Q function can be represented using
a look-up table, Q learning is guaranteed to converge to the optimal value function
Q� under mild assumptions. Given convergence to Q�, the optimal policy π� can be
induced by greedy exploitation of Q according to π�(s) = arg mina∈A(s) Q�(s, a).

Working with high-dimensional, continuous state spaces, we need to utilize a func-
tion approximator to represent Q. Then, most of the convergence results regarding
Q learning no longer hold. Concerning function approximation we pursue a neuro-
dynamic approach (NDP), representing the value function with a multi-layer percep-
tron neural network. We focus on networks of this type since they are universal ap-
proximators and feature good generalization capabilities. With function approximation,
no direct assignment of Q values is possible: Instead, the approximator used must be
fitted to the Q function. If r denotes the network’s weights, a common way to ap-
proximate the optimal value function by a function Qr(s, a) is based on minimizing
the error in Bellman’s equation, i.e. minr

∑
(s,a)∈C(Qr(s, a) − ∑

s′(psas′(c(s, a) +
minb∈A(s′) Qr(s′, b)))2 (with C as set of representative sample state-action pairs [2]
and psas′ and c(s, a) being estimated from data).

2.1 Troubles in Converging

Does Bellman error minimization in conjunction with function approximation imply
convergence to a (near-)optimal policy? In general, it is expected that convergence
cannot be achieved and a phenomenon called “chattering” occurs. The space Q of all
Q functions can be divided into greedy regions [2] where a constant policy (given by
greedy Q exploitation) is followed. Each such region corresponds to a different greedy
policy and has its own greedy point—the point in Q to which Qr(·) moves in the course
of learning. If that greedy point does not lie in its greedy region, the policy learnt may
fluctuate between two or more greedy policies sharing the same boundary in Q [5].

There are various publications reporting on negative results using RL approaches
with function approximation, many of which head into a specific direction: The pol-
icy the learning agent acquires quickly reaches a remarkable quality, but in the further
course of learning a significant policy degradation can be observed. For instance, Bert-
sekas and Tsitsiklis [2] report on attempts to learn a policy for playing the game of
Tetris and point out the paradoxical observation that high performance is achieved after
relatively few policy iterations, but then performance drops. Similar observations are
reported by Gaskett [4] working with the cart pole benchmark, Bertsekas et al. [1] in the
context of a missile-defense scenario, and other authors. We encountered comparable
problems (see Section 4 and [6]): Applying Q learning in a Bellman residual minimiz-
ing manner yields excellent policies, but only at some specific stages of learning before
a loss in policy quality appears, whereas the Bellman error is being decreased continu-
ously. We need to stress that these issues cannot be (at least not solely) related to effects
of overfitting the network to the training data: Oscillations in and degradation of policy
performance can also be observed, when the learned policy is applied to situations that
were actually covered by the training set on the basis of which the net had been trained.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

654

3 Monitoring Q Iteration

A simple approach to select high-quality policies despite of oscillations during learning
is to let the policies generated undergo an additional evaluation based on simulation.
Bertsekas et al. [1] call this process of final policy selection screening. However, this
approach is extremely time-consuming, in particular for optimistic policy iteration or
Q learning settings, where a large number of potential policies are created: Each time
an update to the current policy has been made (step from policy πk to πk+1), a large
number of test episodes must be run in order to assess the new policy’s true quality.

In the following, we develop a different approach to circumvent effects of policy
degradation during advanced stages of learning. The basic idea of our approach to
monitored Q iteration (MQI) is to (a) define an auxiliary error metric that more directly
relates to a policy’s actual performance, (b) create the conditions that this error mea-
sure can be effectively calculated, and (c) continuously monitor the learning process,
remember top-performing policies, and also facilitate an early stopping of learning.
So, we will be able to avoid an extensive simulated evaluation of generated policies
(screening) and thus save computational resources, while being able to figure out a
nearly optimal policy. In its current version, MQI is applicable to environments where
A(s) is finite for all s ∈ S.

MQI can be considered as a representative of the class of fitted Q iteration algo-
rithms [3], which compute an approximation of the optimal policy from a finite set
(batch) of four-tuples F={(si, ai, ci, s

′
i)|i=1, . . . , p} that correspond to single “expe-

rience units” collected by the agent within its environment.

MONITORING

Environment /
Interaction

Collected
Experience

F

Closed World
Q Iteration

(s,a) Q(s,a)
(s1,a1)
(s2,a2)

…
…

……

(sp,ap)

“Idealized“
Q Table

Training Subset
Selection Training

Set

T

Auxiliary
Error Metric

Q(·,·)

Neural Network Training

Network
Error

Calculation Weight
Adjustment

Stop Criterion r

Fig. 1: Building Blocks of MQI

3.1 Closed World Q Iteration

In a preliminary phase, the RL agent interacts with the environment and collects the
tuple set F. These training tuples are fed into a procedure we call closed world Q iter-
ation (CWQI). This name tributes to the fact that CWQI abstracts from the real system
dynamics and considers the information in F only. It works like standard Q learning on
the finite set of points in state-action space provided by F and is thus able to compute a
value function that can be stored in a look-up table QF . The only precondition CWQI
requires is that for each state s that is part of a tuple in F, there must exist (at least)
one successor state s′ to be found in another training tuple in F (or s′ is a goal state
corresponding to an episode end). This requirement is fulfilled when the training data
is gathered along trajectories. The result is an “idealized” value table QF which reflects
the cost structure and transition probabilities contained in the training batch F.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

655

3.2 Auxiliary Error Metric

Of course, the idealized Q table returned by CWQI is imperfect with respect to the real
system—since it stems from a finite batch of interaction experience only. If Q� denotes
the optimal value function and a�

s a corresponding optimal action in a state s, then there
are most likely states si for which it holds that arg mina∈A(si) QF (si, a) �= a�

si
, since

there has been no information on the actual value of taking action a�
si

in state si in
the set of training tuples. Thus, for training the neural net, we select only those tuples
(si, ci, ri, s

′
i)∈F for which a substantial share of available actions A(si) has been tried

(selection of training subset T). We argue that with the idealized Q table’s entries, some
(near-)optimal policy can be obtained. Particularly, we assume that: If s ∈ S is a state
covered by the training set T, then it holds QF (s, ai) ≤ QF (s, aj) ⇔ Q�(s, ai) ≤
Q�(s, aj) for all ai, aj ∈A(s). So, for each s∈S covered within T, we can determine
the optimal action and, moreover, a ranking for all actions a∈A(s), which is identical
to the order of actions when a total ordering with respect to Q�(s, a) would be defined.

Though that assumption will be sometimes violated in practice, we define and make
use of the following auxiliary error measure: Let Qr denote the value function currently
represented by the net and let rankQr :S×A→N with (s, a) �→ |{b ∈ A(s)|Qr(s, b) <
Qr(s, a)}| define a ranking on the finite number of actions available in state s (action
with highest Q value has first rank). Then, we compute the index error IEQr (T) for a
given training set T and value function Qr as

IEQr (T) :=
∑

((s,a),QF (s,a))∈T

|rankQF (s, a) − rankQr (s, a)|
|T|

The idea behind the index error is to have an indicator that states to which extent Qr

matches the intended ranking of actions for one specific state. If we have achieved
finding a Qr for which IEQr (T) = 0, then the corresponding policy πQr will behave
optimally w.r.t. QF and so optimally w.r.t. the experience collected in the environment.

3.3 Neural Network Training

Adjusting the network weights with respect to the error on the training set T, we make
use of backpropagation. The error to be minimized is e = 1

|T|
∑

((s,a),QF (s,a))∈T
(QF (

s, a) − Qr
k(s, a))2 with Qr

k as the value function currently represented by the net. It is
known that excessive minimization of the mean squared error on some finite training set
may worsen the net’s generalization capabilities (overfitting). Apart from that, we have
seen (cf. Section 2.1) that a minimized Bellman error does not necessarily correspond
to maximized policy performance. In particular, when considering the behavior on the
training set only, i.e. disregarding the desire to generalize, Bellman error minimization
on the training data may lead to a policy which less often chooses the optimal action,
even on the states that are covered in the training set. With the index error, however, we
have a measure that captures the correctness of a policy’s action choice and helps us in
finding (near-)optimal policies more reliably. We use it as an alternative error measure,
while iterating in the neural network training building block of MQI (learning by epoch)
and hence minimizing the mean squared (Bellman) error: The value of IEQr

k
(T) is

monitored continuously, the iteration μ, at which the minimal index error could be
achieved, is remembered, and Qr

μ (represented by the neural net) is returned.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

656

4 Empirical Evaluation

To evaluate MQI we chose the application domain of reactive job shop scheduling [7].
The learner’s task is to autonomously acquire dispatching policies to assign jobs to a
limited number of resources, where each job consists of a certain number of opera-
tions to be processed on specific resources. For a detailed description of the RL job
shop scheduling scenario we refer to [8]. The basic idea of this alternative approach
to scheduling, however, is to model the environment as an MDP1 and have a learning
agent at some of the resources, that decides which job to process next based on its local
view on the entire plant. During learning it shall adapt its behavior so that production
cost minimization, i.e. minimal overall tardiness (job due date violations), is achieved.

All experiments involved 3 cooperative resources one of which was equipped with
a learning (Q or MQI) agent and 2 stationary ones working according to some simple
dispatching rule, preferring jobs with earliest due date (EDD), minimal slack (MS), or
shortest/longest processing time (SPT/LPT). Each experiment is divided into a train and
test phase: A random set SA of training scheduling scenarios and an independent set SB

of testing scenarios is generated (all differing in the properties and numbers of jobs to
be processed). During training, the scenarios in SA are processed repeatedly where the
learning agent picks random actions (explores) and that way collects experience, used
to learn the state-action value function (represented by a three-layer net). Testing, the
SB scenarios are processed, with the adaptive agent behaving greedily w.r.t. its current
Q function, and the overall tardiness (as optimization goal of the plant) is measured.

Degrading Policies: Applying Q learn-

 0

 10

 20

 30

 40

 50

 60

 0 1000 2000 3000 4000 5000 6000
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

A
ve

ra
ge

 T
ar

di
ne

ss

A
ve

ra
ge

 S
qu

ar
ed

 B
el

lm
an

 E
rr

or

Training Episodes of Q Learning

Tardiness for EDD+MS+Q (training)
Tardiness for EDD+MS+Q (testing)

Bellman Error for EDD+MS+Q

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
 70

 80

 90

 100

 110

 120

 130

 140

 150

A
ve

ra
ge

 T
ar

di
ne

ss
 fo

r
E

D
D

+
M

S
+

[Q
|M

Q
I]

A
ve

ra
ge

 T
ar

di
ne

ss
 fo

r
LP

T
+

S
P

T
+

[Q
|M

Q
I]

Episodes of Experience Collection

Tardiness for LPT+SPT+Q (testing)
Tardiness for LPT+SPT+MQI (testing)

Tardiness for EDD+MS+Q (testing)
Tardiness for EDD+MS+MQI (testing)

Fig. 2: Degrading Policy (Q Learning, top)
and Performance of MQI (bottom)

ing, the Bellman error on the training set
is minimized continuously (see Figure 2,
top). In the beginning, policy performance
(in terms of tardiness) is improving, too.
In the further course of learning, how-
ever, the average tardiness increases again.
Intuitively, this is the effect one may ex-
pect and blame on overfitting. Yet more
interesting, in this figure the summed tar-
diness on the training set (the scheduling
scenarios for which the agent’s policy is
actually being trained) is also shown. It
reveals that, while the Bellman error is
dropping concurrently, the agent’s perfor-
mance on the training set is worsening
(after an initial phase of improvement);
the learned policy degrades. Only in one
of our experiments (comprising an EDD,
an LPT, and the learning resource; not
sketched) these effects were negligible.

Stabilization of the Learning Process: The x-axes in Fig.2 (bottom) correspond to
episodes of expeience collection: For Q learning this is the time-dependent course of

1A state is represented by the situation a resource is in (i.e. properties of the set of waiting jobs), actions
correspond to the decision for processing a specific job next, and costs arise due to due date violations.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

657

learning, while MQI first collects experience interacting with its environment and then
starts fitting the value function. So, for MQI each data point along the x-axis represents
a single learning process using all the experience collected in as many episodes.

Clearly, MQI’s results are much Tardi- EDD+LPT+ EDD+MS+ LPT+SPT+ MS+SPT+
ness Q MQI Q MQI Q MQI Q MQI
Best 88.5 85.6 24.8 25.4 107.7 99.5 58.7 57.3
Avg 93.2 92.1 31.1 26.3 130.9 103.8 63.2 61.0
Worst 100.5 95.3 36.9 28.3 146.7 115.9 67.4 64.4
StdDev 2.50 1.48 1.89 0.51 7.37 3.05 1.34 1.32

Table 1: Considering learning processes of varying length
(1000 to 40000 scheduling episodes), this table opposes av-
erage, best/worst case tardinesses, and learning result fluctua-
tions of the learnt policy for Q learning and MQI and for differ-
ent environments, i.e. different heuristically deciding agents.

less dependent on the amount of
episodes of experience collection
used for learning. Moreover, in
both scenarios sketched the poli-
cies learned by MQI are better than
the ones found by Q learning, re-
gardless of the size of the four-
tuples set F. On Sb, standard Q
learning achieves better schedul-
ing performance only in the EDD+
MS+[Q|MQI] scenario (Table 1), but only during the first few hundred training episodes.
Yet, this good result would have been only detected by exhaustive policy screening.

5 Conclusion

In approximate RL where the state-action value function is represented by a function
approximator, the learned policy may degrade after an initial phase of improvement.
As a way to combat this problem and to circumvent the need for an additional policy
screening process to evaluate intermediate policies, we have proposed an RL method
that reliably learns a near-optimal state-action value function from a batch of experi-
ence. MQI facilitates the definition of an auxiliary error metric by which the learn-
ing process can be monitored and eventually ceased to prevent the learner from policy
degradation and overfitting. Empirically, we have investigated MQI’s capability to sta-
bilize the learning process in the application field of reactive production scheduling.

Acknowledgements: This research has been supported by the German Research Foun-
dation (DFG) under grant number Ri 923/2-1.

References

[1] D. Bertsekas, M. Homer, D. Logan, S. Patek, and N. Sandell. Missile Defense and Interceptor Allocation
by NDP. In IEEE Transactions on Systems, Man, and Cybernetics, pages 42–51, 2000.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Neuro Dynamic Programming. Athena Scientific, Belmont, 1996.

[3] D. Ernst, P. Geurts, and L. Wehenkel. Tree-Based Batch Mode Reinforcement Learning. Journal of
Machine Learning Research, (6):504–556, 2005.

[4] C. Gaskett. Q-Learning for Robot Control. Ph.D. Thesis, Australian National University, 2002.

[5] G. Gordon. Stable fitted reinforcement learning. In Advances in Neural Information Processing Systems,
volume 8, pages 1052–1058. The MIT Press, 1996.

[6] W. Hunger and M. Riedmiller. Scheduling with adaptive agents - an empirical evaluation. In Proceedings
of EWRL-5, European Workshop on Reinforcement Learning, 2001.

[7] Michael Pinedo. Scheduling. Theory, Algorithms, and Systems. Prentice Hall, USA, 2002.

[8] S. Riedmiller and M. Riedmiller. A Neural Reinforcement Learning Approach to Learn Local Dispatch-
ing Policies in Production Scheduling. In IJCAI99, pages 764–771, Stockholm, Sweden, 1999.

[9] C. Watkins and P. Dayan. Q-Learning. Machine Learning, 8:279–292, 1992.

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

658

