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Abstract. A novel nonlinear transient computation device is presented
which is designed to perform computations on multiple spike-train input
signals. The input signals perturb the internal dynamic state of the device
in a way that is characteristic of the input signal presented in each case.
These characteristics are reflected in the output spike train of the device.
Experimental evidence is presented in this paper which shows that this
output spike train is both a noise tolerant and a noise sensitive response
to the input signal presented.

1 Introduction

Devices which process information through perturbations or transients in their
internal dynamics can be described as transient computation machines [1]. Re-
cent examples of such devices are liquid state machines (LSM) [2] and echo
state machines [3]. Inputs to these devices are distributed across a large pool
of neurons (referred to as the liquid layer in LSMs). These inputs perturb the
dynamics of this pool of neurons in a manner that is characteristic of the input
presented in each case. A layer of output units (readout neurons in LSMs) can
be trained to respond to these characteristic transients in the dynamics of the
pool of neurons. In this way, the device can map input patterns to target output
units.

The Nonlinear Transient Computation Machine (NTCM) is a novel device
which performs transient computation without the large pool of neurons re-
quired in other devices. Instead, inputs presented to the device perturb the
internal dynamics of a single weakly chaotic neuron. The characteristics of this
perturbation are reflected in the output spike train generated by the neuron. A
detailed discussion of the properties of the NTCM have been presented elsewhere
[1]. This paper is concerned with the NTCM’s response to noisy input patterns.
Specifically, evidence is presented of the NTCM’s ability to produce both a noise
tolerant and a noise sensitive response to input within the same output spike
train.

2 The Nonlinear Transient Computation Machine

The Nonlinear Transient Computation Machine (NTCM) is a novel device for
computing time-varying input signals. It consists of two coupled neurons, one of
which acts as a pacemaker (denoted NP ) whilst the other provides the locus for
the transients (denoted NT ). The internal dynamic states of both neurons are
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modeled by three variables (ui(t), xi(t) and yi(t) with i = P for the pacemaker,
and i = T for the transient neuron) whose behaviors are determined by the
following equations:

ui(t + 1)
(a)
=

{
η0 : ui(t) > θ

ui(t) + d(v − ui(t)xi(t) + kui(t)) + Ωi(t) : ui(t) ≤ θ

xi(t + 1)
(b)
= xi(t) + b(−yi(t) − ui(t)) + Ii(t)

yi(t + 1) = yi(t) + c(xi(t) + ayi(t))

γi(t) =
{

1 : ui(t) > θ
0 : ui(t) ≤ θ

(1)

where ui(t) represents the internal voltage of neuron i at time t, xi(t) and yi(t)
are internal state variables necessary to produce the attractor which governs
the chaotic dynamics of neuron i. η0 is the after-spike reset value for ui(t) and
a, b, c, d, v, and k are the parameters of the system. θ is the firing threshold
and γi is the spike output of neuron i. Ii(t) is the weighted sum of the spikes
sj(t)(j = 1..n) occurring on the n external input lines at time t. External input
is presented only to the transient neuron (hence IP (t) = 0 for all t):

IT (t) = f(
n∑

j=1

wjsj(t)) (2)

where f(x) is the sigmoid 1/(1 + exp(−λx)). For the pacemaker neuron, Ωi(t)
in Equation 1(a) denotes a time delay self-feedback control (see below) and is
defined by ΩP (t) = wP γP (t−τ). Whereas for the transient neuron, Ωi(t) denotes
instantaneous input from the pacemaker neuron: ΩT (t) = wT γP (t)

In the absence of delayed self-feedback (wP = 0) and external input the
internal dynamics (ui(t), xi(t) and yi(t)) and the output (γi(t)) of both neurons
are weakly chaotic (with average Lyapunov exponent of approximately 0.01)[4,
1]. The coupling between the neurons defined by the equation for ΩT results in
the synchronization of the transient neuron with the pacemaker (i.e. uP (t) =
uT (t), xP (t) = xT (t) and yP (t) = yT (t) for t > χ, where χ is sufficiently large
to allow synchronization to take place.)

When self-feedback is subsequently activated at time tc in the pacemaker
(i.e. wP (t) > 0 for all t > tc) the output of the neuron (γP (t)) delayed by a
discrete number of time steps τ is added to state variable uP (t). The effect of
this self-feedback is to stabilize the internal dynamics of the pacemaker into a
periodic orbit, resulting in a periodic spike train as output [4].

The purpose of the pacemaker (NP ) is to lead the transient neuron (NT )
into a periodic firing pattern through synchronization. While external input
is being presented to NT , the coupling from NP is temporarily removed. The
external input (IT (t) in equation 1(b)) perturbs the internal state of NP which

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

510



will subsequently evolve along a transient away from the periodic firing pattern
induced by NP . This transient is reflected in the output spike train of NT . After
the input has been presented the coupling with NP is gradually restored and as
NT begins to converge back to the original synchronized periodic firing pattern,
the effects of the external input on its internal dynamics fade and eventually
disappear.
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Fig. 1: The activations of the three SRM readout neurons (rows) in response to
increasing noise levels in a specific input pattern (columns)

Several important properties of the NTCM have been discussed in detail else-
where [1], including the so called separation property SP and the approximation
property AP which are said to be prerequisite for computation using transients
[2]. This paper is concerned with another property of the NTCM which is that it
consistently produces both a noise tolerant and noise sensitive response to input
patterns [1]. This occurs because small differences in inputs do not have a signif-
icant immediate effect on the internal dynamics of NT . Hence, two similar input
patterns will initially result in similar spike trains from NT . However, because
the internal dynamics of NT are weakly chaotic, the difference in these spike
trains will after some time increase at a low exponential rate. Consequently,
small differences in inputs initially produce an almost identical responses from
NT , enabling noise tolerance; but these responses will eventually become quite
distinct, enabling a sensitive response to noise within the same spike train.

The following experiment demonstrates how this variable response to noise
can be detected by the readout mechanism of the NTCM. The readout mech-
anism is composed of three Spike Response Model (SRM) neurons [5], each of
which is sensitive to a specific temporal sub-range (or time zone) of the spike
train emitted by NT . The first SRM is sensitive to spikes in the first 100 time
steps of NT ’s spike train (note that the input spike train is presented to NT at
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Jitter: 0 1 2 3 4 5 6 7 8 9
0.75 WGN: 43.1 23.7 4.1 0.1 0 0 0 0 0 0
2.0 WGN: 16.7 16.4 11.9 5.8 4.2 1.4 0.7 0.1 0.4 0

Jitter: -9 -8 -7 -6 -5 -4 -3 -2 -1
0.75 WGN: 0 0 0 0 0 0 0 3.8 25.2
2.0 WGN: 0.1 0 0.4 0.4 1.1 3.9 8.6 11.7 16.2

Table 1: The percentage of spikes jittered by from -9 to +9 time steps for two
different levels of noise.

t = 0). The second is responsive to spikes within the [50..150] time step window.
The third is responsive to spikes in the [100..200] window. All three SRM read-
out neurons should fire if the input closely matches the recognized pattern (see
below). As noise is introduced in the input the third readout neuron will cease
to fire since it is activated by the most noise sensitive part of the NT ’s spike
train, whilst the other two will continue to fire. As the noise is increased further
the second readout neuron will also cease to fire. The first readout neuron will
continue to fire even in the presence of strong noise because it is activated by
the most noise tolerant part of the NT ’s spike train.

In this experiment the NTCM is first presented with a prototype pattern
consisting of five independent spike trains, each containing up to 4 randomly
timed spikes within the period [1..100]. The corresponding spike output of NT

is then used to construct multiple time-delayed connections from NT to each of
the readout neurons. The delays in these connections are configured so that an
above threshold effect is caused on each readout neuron whenever the pattern
of spikes produced by NT in the readout’s time zone matches that produced by
the prototype input pattern.

Noisy versions of the prototype were created by adding jitter to the timing of
each spike. The jitter was determined using white Gaussian noise with a mean
of 0. Table 1 shows the percentage of spikes jittered by from -9 to +9 time
steps in each pattern for a noise level of 0.75 and a noise level of 2 (see below).
The graphs is Figure 1 show the output of the three readout neurons (rows) for
three different levels of noise (columns). The first column shows that all three
readout neurons fire when the NTCM is presented with the original prototype
pattern. In the second column only readout neurons SRM1 and SRM2 fire when
presented with a jittered version of the prototype pattern (noise level 0.75 in
Table 1). The third column shows only readout neuron SRM1 firing in response
to the prototype with significantly increased jitter (noise level of 2.0 in Table
1). In this way the NTCM is able to produce both a noise tolerant (indicated
by readout neuron SRM1) and a noise sensitive (indicated by readout neurons
SRM2 and SRM3) response to inputs through the same spike train output.
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3 Results

This paper explores the variable noise tolerance of the NTCM as outlined in
the previous section. Specifically, the aim is to show that the spike output of
the three readout neurons is determined by the level of noise present in the
input, and that readout neurons receiving early spikes from NT (SRM1 in the
above) will be more noise tolerant than those receiving late spikes from NT

(SRM2 and SRM3 in the above). To this end, the experiment described in the
previous section is repeated 400,000 times with a gradual increase in the noise
level after every 100 experimental runs. The noise level is simply the weight
which multiplies the white Gaussian noise function (mean of 0). This weighted
function is used to determine the amount of jitter added to the prototype. As
shown in Table 1, larger weights increase the range of time steps by which each
spike can be jittered. In the experiment presented here, the weight is increased
from 0 to 4.0 in steps of 0.01. 100 experimental runs were made for each value
of the weight.
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Fig. 2: The responses of the three SRM readout neurons to increasing levels of
white Gaussian noise in an input pattern.

The graph in Figure 2 plots the total number of times each readout neuron
fires out of the 100 experimental runs for each weight value. The graphs clearly
shows that all three neurons fire in all 100 runs when the weight is in the range
0..0.2. As the weight is increased from 0.2 the percentage of cases in which SRM3
fires drops quite rapidly towards zero. The fall in the percentage of cases in which
SRM2 fires also drops, but less steeply. SRM1 continues to fire in a significant
number of cases even up to a value of 4 for the weight. The variance in the plots
as the weight is increased is due to the variance in the amount of jitter applied
to each of the 100 patterns for each weight value. The plots would smooth out as
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the number of runs for each weight is increased beyond 100. The plots for SRM2
and SRM3 level off but don’t remain at zero as the weight is increased. This
again is the result of the white Gaussian noise where a percentage of spikes in
each pattern will not be jittered. Hence a small proportion of jittered patterns
out of the 100 in each time step will quite closely resemble the prototype causing
SRM2 and SRM3 to fire.

These results show that the spike output of the three readout neurons is
determined by the level of noise in the input. They also show that readout
neurons that receive early spikes from NT are more noise tolerant than those
that receive late spikes.

4 Conclusion

Experimental evidence has been provided which demonstrates that the NTCM
produces both a noise tolerant and a noise sensitive response to an input pattern
within the same output spike train. This property is the result of the weakly
chaotic internal dynamics of the NT neuron. Nearby points in the state space
of a weakly chaotic attractor will diverge at a relatively low exponential rate.
Consequently, transients in the dynamics of NT caused by similar input patterns
will initially evolve in a similar way. As a result, the early spikes of the NT ’s
output are tolerant of noise. Only later in the evolution will these transients
begin to diverge significantly, producing the noise sensitive characteristic of the
later spikes of NT . The potential utility of this property of the NTCM for specific
applications is beginning to be explored. It could be useful in the context of
speech recognition, for example, where variations in the vocal characteristics of
a spoken word might be of interest (for speaker identification, for instance) as well
as the correct recognition of the word independent of specific vocal characteristics
that communicate it.
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