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Abstract. The visualization of continuous multi-dimensional data based
on their projection in a 2-dimensional space is a way to detect visually
interesting patterns, as far as the projection provides a faithful image of the
original data. We propose to visualize directly in the projection space, how
much the neighborhood has been preserved or not during the projection.
We color the Voronoi cells associated with the segments of the Delaunay
graph of the projections, according to their stretching or compression. We
experiment these techniques with the Principal Component Analysis and
the Curvilinear Component Analysis applied to different databases.

1 Introduction

1.1 Exploratory analysis by projecting data

The exploratory analysis of a set of multi-dimensional data is essential for the
expert to apprehend and process ever growing databases. In this work, we con-
sider the case of data expressed as vector of coordinates in some D-dimensional
Euclidean space to which we refer as the original space in the sequel. Among
other techniques [2], projecting the data onto a 2-dimensional space is a way
for the expert to apprehend visually their topology in the original space, e.g.
their connectedness, the number of clusters and eventually their shape or the lo-
cal intrinsic dimension. . . Here we focus on the continuous projection techniques
which associate to each original datum an image in the 2-dimensional Euclidean
projection space through either a linear or a nonlinear projection. The former
class of projections contains the axis parallel projection, the Principal Com-
ponent Analysis (PCA) [4] and the classical linear Multi-Dimensional Scaling
(MDS) [8]. The latter class of non-linear projections encompasses the Sammon’s
Non Linear Mapping (NLM) [7] which aims at preserving pairwise distances be-
tween data from the original space to the projection space focusing on the small
distances in the original space, or the Curvilinear Component Analysis (CCA)
[3], a variant of the NLM which focuses on the short distances in the projection
space instead.

1.2 Visualizing distortions

As first highlighted by Venna and Kaski [9], it is very important for the expert
to know whether nearby data in the projection space are actually nearby in the
original space or not. A projection is told "trustworthy” in this case. Venna
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and Kaski proposed to measure the ”trustworthiness” to perform more relevant
comparisons between projection techniques. However, this measure is a sum
over the trustworthiness measured at each point, providing a number which
characterizes globally the projection. Here we would like to propose a way to
”visualize” the trustworthiness between some pairs of points.

Most of the efforts in visualizing distortions have been carried on the Self-
Organizing Maps [6, 10], but very few on the continuous projection techniques
[1, 11]. In our previous work [1], we proposed to visualize compression, stretching
and proximity in the original space by coloring Voronofi cells of each projected
datum. The proximity measure is particularly interesting because it shows all
the original pairwise distances associated with a selected datum in the projection
space. However, it does not give an overview of the trustworthiness of all the
projected data at one glance.

To complete this work, we propose to visualize at once all pairwise distor-
tions associated with neighboring data in the projection space, by coloring some
regions attached to these neighboring pairs of data. To avoid overlapping of the
colored regions, we propose to consider the pairs of data whose Voronof cells are
adjacent in the projection space, so those projected data which are connected
by an edge of their Delaunay graph.

2 Framework

We consider a (N, N) dissimilarity matrix X obtained by computing Euclidean
distances X;; between any pairs (x;,2;) of data £ = (21,...,2x) in an original
D-dimensional space E = R”, and the set of corresponding projections y =
(y1,.-.,yn) in the projection space F' = R? Euclidean with the distance matrix
Y.

The Voronoi cell V; of the point y; is defined as [5]:Vy; € y, Vi = {v €
F|Vy; €y,(v—yi)* < (v —y;)*}.

These cells cover the projection plane. We then consider such pairs of pro-
jections for which the Voronoi cells are adjacent, so that the set of edges which
connect such pairs L = {{i,j} € (1,...,N)?|i # j,V;NV; # 0} is the set of
edges of the Delaunay graph of the projections y in the projection space [5].
The ”segment-Voronoi ” cell, which is the Voronoi cell of the line segment join-
ing y; and y;, is defined as: V{i,j} € L,V;; = {v € F | Vk,l € L,d;j(v) < di(v)}
where d;;(v) = min,eo,1] (v—(ay; + (1 — a)yj))2.

We consider that a measure m;; € [—1, 1] is associated with a pair {y;,y;} of
Delaunay neighbors in the projection space. We propose to use a colormap going
from black (-1) to white (+1) passing through grey (0) to color the corresponding
segment-Voronoi cell. We define a measure of stretching and compression for the
segments m;; as

Yij — Xy
maxyy yer(abs(Ya — X))

This measure is relative to the maximum distortion measured between pairs
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of points and their projections. It allows visualizing directly in the projection
space, whether the original pairwise distance X;; between Delaunay neighboring
data {y;,y; } in the projection space has been preserved (average grey), stretched
(black) or compressed (white) after the projection. This gives an idea about how
much the visualized closeness can be trusted upon.

3 Experiments

We experiment this method onto the same data sets used in our previous work
[1] (except for the parallel planes) allowing to compare both visualization tech-
niques. We show in which way the proposed visualization method is relevant to
qualify the trustworthiness of the projections.

We use PCA and CCA onto three simple data sets with known topology:
two interlaced rings in R? in figure 1, a sphere in R® in figure 2, and two parallel
planes in R? in figure 3. The results are discussed in the caption of the figures.
Notice that no stretching occur during PCA.

4 Discussion

It appears that the analyst should pay attention to the areas where nearby cells
show strong contrasting colors. It also appears that this technique is suitable
to visualize whether pairs of nearby projections are images of effectively nearby
original points, but it is less relevant to deal with pairs of far apart projections.

The fact it is a relative distortion measure makes it sensitive to noise, show-
ing strong distortions where in fact the projection is not as bad. An absolute
distortion measure should be used in parallel to distinguish between noise and
true artifacts.

5 Conclusion

We proposed a method to evaluate visually the trustworthiness of a continuous
projection. It is based on the coloring of segment-Voronoi cells associated with
Delaunay neighboring pairs of projected data. The color is set according to the
relative stretching or compression which occured on each segment during the
projection. The real originality of our approach lies in the use of these segment-
Voronoi cells making visible the pairwise distortions in the place where they just
occur, helping the analyst to interprete the projections.

This allows detecting rapidly gluing of manifolds. However, it does not al-
low evaluating where tearing occured as can do the proximity visualization we
proposed in our previous work [1].

An interesting idea to explore has been proposed by one of the anonymous
reviewers, using the ranks of the data points instead of distances, as in the
Trustworthiness measure [9]. This method is complementary to other existing
visualization methods of distortions measures. We plan to develop this approach
for 3-dimensional projections.
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Fig. 1: Projection of two interlaced rings : (a) Original 3D data whose topology
and geometry is supposed to be unknown but is to be partially recovered through the
projections. Data projected by the PCA (b) and the CCA (e) as it appears usually (The
markers allow distinguishing to which ring belong the original data). Shall we trust
what we see? (c) Segment-distortions after PCA. The left ring is the most distorted.
The distortions occur across the rings (bright cells) but not along them (average grey
cells) (d) A zoom at the bottom crossing (box in (c)) shows a gluing of manifolds:
projections close to each other have adjacent segment-Voronoi cells with very different
colors, showing that both rings have been glued while they are disconnected in the
original space. This allows flushing out a topological distortion. (f) Data projected by
the CCA show strong compression (bright cells) across the rings and some stretching
(dark cells) too. Ome of the ring has been splitted but this visualization technique
does not show tearing of manifolds, so we cannot say seeing the projections, whether
the original data are grouped into two or three connected sets in the original space.
However, we know at least they are separated into at most three connected sets because
of the trust we got in the connectedness of the three different parts (pieces of rings)
through the average grey color (no distortion) of the Voronoi cells we can see along
these structures.
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Fig. 2: Projection of a sphere: (a) Original data on a sphere. (b) Projected
data using PCA. Most of the compressions (bright and dark cells) concentrate at the
center of the projected distribution where back and front points originally far from each
other are projected nearby, showing a gluing of the original manifold. Distances along
the convex hull of the projections are well preserved (average grey cells). (c) Data
projected using CCA as a triangular shape. Strong stretching (dark cells) occured
along the right-hand sides of the triangle showing that tearing of the original sphere
certainly occured here. However, this is not visible on the left-hand side of the triangle,
while tearing occured there too. The distorsion we propose being a measure relative
to the maximum distortion, it is sensitive to noise giving too much emphasis to the
compressions and stretching occuring in the middle part of the projection while small
distortions in this place are unavoidable and not as important for the analyst.

Fig. 3: Projection of two parallel planes: (a) Original data. (b) Projected data
using PCA. Strong compressions occur in the middle showing a gluing of the originally
disconnected manifolds. Thus, if classes are given, their apparent overlapping is likely
to be an artifact of the projection and should not be taken for granted. (c) After CCA,
compressions concentrate where both planes overlap, and stretching is partly visible on
the border of the distribution of projected data. PCA provides a more uniform coloring
than CCA due to the linearity of the projection, which eases the visual detection of the
problematic area. The analyst should pay attention to the areas with strong contrasting
colors.
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