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Abstract. This paper presents a neural approach to sensor modelling
and classification as the basis of local data fusion in a wireless sensor net-
work. Data distributions are non-Gaussian. Data clusters are sufficiently
complex that the classification problem is markedly non-linear. We prove
that a Continuous Restricted Boltzmann Machine can model complex data
distributions and can autocalibrate against real sensor drift. To highlight
the adaptation, two trained but subsequently non-adaptive neural classi-
fiers (SLP and MLP) were employed as benchmarks.

1 Introduction

Driven by the recent advances in microsensor technology, many multisensor mi-
crosystems have been developed for different applications. For example, in the
Wireless Integrated Network Sensors (WINS) array [1], low cost sensing devices
are deployed for environmental/machinery monitoring in place of an expensive
fully-wired system. To overcome the narrow communication network bandwidth,
sensor signals are processed locally. Events of interest provoke an alarm to a
basestation for further decision making. Local data fusion (typically classica-
tion) uses a neural network because it allows data fusion at all levels (signal,
pixel, feature and symbol).

In this paper, we focus on local data fusion using of a generative model, the
“Continuous Restricted Boltzmann Machine” (CRBM) and a Single Layer Per-
ceptron (SLP). The former extracts salient features by modelling the integrated
sensors, while the latter performs binary classification on the extracted features.
The CRBM was developed specifically to fuse data at signal level and to have a
hardware-amenable architecture [2].

The CRBM has one visible and one hidden layer with a symmetric inter-layer
weight matrix {W}. Each stochastic neuron j takes the following form:

s; = tanh [aj (Z'LUijSi +o- Nj(0,1)>] ) (1)

where s; refers to input from neuron 4, and N;(0, 1) represents a unit Gaussian
noise with zero mean. The noise component ¢-N,(0, 1) allows the CRBM to per-
form probabilistic analogue computation via Gibbs sampling method. The noise
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control parameter a; controls the slope of the sigmoid function, such that the
behaviour of a neuron j is either deterministic (small a;), continuous-stochastic
(moderate a;), or binary-stochastic (large a;). Both {a;} and {w;;} are trained
by a “Minimizing Contrastive Divergence” (MCD) learning rule [3]. The sim-
plified MCD learning rule [2] requires only addition and multiplication, and is
therefore more hardware-amenable.

The objectives of this paper are two-fold: 1) to demonstrate that the CRBM
can model non-Gaussian distributions and 2) to illustrate the advantage of adap-
tive sensor fusion in a dynamic environment. The paper is organized as follows.
Section 2 discusses how to model non-Gaussian distributions with a CRBM. In
this case, the learning is evaluated based on the reconstruction model and a
binary classification with a SLP connected to the hidden units of the CRBM
(Section 3). Section 4 examines the CRBM’s modelling capability in both static
and dynamic environments. A conclusion is provided at the end of the paper.

2 Sensor Modelling

To perform binary classification with a neural network, typically the sensor data
distributions will first be encoded by a neural model and then one or more hy-
perplane(s) defined by the model will be used to separate one class of data from
another. While the noise, which causes the dispersion in the distributions, is
often taken to be Gaussian, this is not valid in many real applications. For ex-
ample, strong non-Gaussian radio-frequency interference is unavoidable in land-
mine detection [4], and the emitted signals by sources are often non-Gaussian
in localization of multiple sources [5]. Therefore, we have extended our own
previous work [6] to non-Gaussian modelling problems.

Modelling non-Gaussian distributions with Gaussian experts is a non-trivial
task. To illustrate this, we modelled a 2-D non-Gaussian data distribution
(Fig.1a) by using a CRBM with five (Gaussian) hidden units. The learning
rates for {w;;} and {a;} were 0.2, while all noise scaling factors o were 0.3. Af-
ter 5000 training epochs, the learning result (reconstruction) was poor (Fig.1b).
Although a; in visible layer autonomously annealed from its initial large value
(i.e. 6.0), the model was trapped in a local minima with final a;(S1, S2) = [1.50
2.87], where S1 and S2 are two sensory inputs to the CRBM. One solution is to
reduce the learning rate for a; to 0.01, at the expense of much longer training
period (> 200000 epochs). A more computationally-efficient approach is to fix
a; at a low value (e.g. 0.1), ie. lowering and controlling the noise component in
Eq.1 and hence the spread of the individual distributions. As shown in Fig.1lc,
the resulting reconstructed distribution is better-defined.

Upon completion of training, the CRBM is configured to adapt to drift in
its baseline without Castatrophic Interference (CI) [7]. All the learning in a;
and w;; except wo; and wyg is discontinued [6]. Such configuration ensures that
1) the distributions’ general features are retained, 2) the distributions’ baselines
encoded by w;p can adapt to drift, and 3) a consistent representation of drifting
data is presented (with updated wo;) to subsequent layer.
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Fig. 1: (a) Non-Gaussian training data, (b) reconstruction data after 5000 train-
ing epochs with a; free running, and (c) reconstruction data after 5000 training
epochs with a; fixed at 0.1.

3 Binary Classification

While the CRBM has a simple, hardware-amenable learning rule, it is difficult
to measure the success of learning quantitatively. The CRBM shares the char-
acteristic of the Product of Experts (PoE) [3] that it is not possible to compute
the normalized constant log Z, where Z is the sum of the probabilities of all
possible CRBM data vectors for a set of {w;;} and {a;}.

An alternative way to evaluate the quality of CRBM learning is to look
at the reconstruction. In this context, reconstruction refers to the distribution
generated by current CRBM at the visible layer after N-step Gibbs sampling.
Typically, the encoded distribution will emerge within ten steps, with the input
data for sampling chosen to be a continuous uniform distribution on (0,1). Then
the reconstruction is compared with the training data distribution to give a
“score” to the learning process.

The extent to which the CRBM has encoded the salient features of the data
may also be probed by performing classification on the hidden layer activities
of the CRBM. An SLP with sigmoidal activation function is trained with the
features extracted by a learnt CRBM. The SLP is clamped to ‘+1’ during the
training of class A data, and to ‘-1’ during class B. Quantifying the learning
result can be obtained by thresholding the activities of the SLP with respect to
a set of test data and calculating the number of correctly classified test data.

4 Simulation Results

4.1 Modelling : Artificial Data

A CRBM with 7 hidden units was trained for 5000 epochs to encode two artificial
clusters with 400 samples for each class (Fig.2a). All the noise scaling factors
and the learning rates were set empirically to 0.4 and 0.2 respectively to achieve
a balance between the model’s convergence rate and details into modelling the
distributions. Whilst the a; in visible layer was fixed at 0.1, its counterpart in
hidden layer was trained, to allow the different hidden units to perform disparate
functions.
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After 5000 training epochs, Fig.2b, the CRBM has modelled what is a reason-
ably challenging pair of distributions with some success. The response/activity
of the trained SLP to a test dataset with 400 samples for each class (Fig.2c)
also shows that the combined CRBM and SLP can classify the two clusters with
100% accuracy, while an SLP alone clearly could not do so.
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Fig. 2: (a) Training data where Class A is non-Gaussian and Class B is Gaussian,
(b) reconstruction after 5000 training epochs, and (c) the trained SLP’s response
to test data.

The simulation was re-run to model another pair of distributions (Fig.3a). As
these clusters are more complicated than previous pair, a longer training period
was required. Fig.3b shows the reconstruction after 20000 training epochs. The
CRBM models the training data distributions with some success once more,
while the combined CRBM and SLP classify test data with 100% accuracy

(Fig.3c).
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Fig. 3: (a) Training data where both classes are non-Gaussian, (b) reconstruction
after 20000 training epochs, and (c) the trained SLP’s response to test data.

4.2 Drift Tracking : Real Sensor data

In our Lab-in-a-Pill application [8], the pH sensors were subject to noise (due
to interfering ions) and sensor drift, especially in the harsh environment of the
Gastrolntestinal (GI) tract. An example of real drift dataset over 20hrs is il-
lustrated in Fig.4a. With the sampling frequency at 0.1Hz, every 10s is defined
as one drift epoch. For this drift simulation, the training data is as in Fig.3a.
A CRBM with 7 hidden units was trained to model it in a static environment.
Subsequently, the trained CRBM was fed with drifting data in which sensor S1
drifted towards its upper limit (‘+1’) and sensor S2 in the opposite direction.
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Moreover, all drifting data were taken from class A, as a fully-balanced rep-
resentation of the data distributions is not always available in real applications.
During the 7644 drift epochs, the CRBM’s weight was allowed to adapt, at a
learning rate of 0.01, to the sensor drift with the configuration described in Sec-
tion 2. The linear classifier (i.e. the SLP) was not subjected to training during
the drift simulation.
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Fig. 4: (a) Real drift data with constant pH level and (b-d) the activity of output
unit for each algorithm over the 7644 drift epochs.

Fig.4b depicts the SLP’s response/activity to the drifting data. As only class
A data was fed, the SLP’s activity should always be at '+1°. With the proposed
configuration, the CRBM managed to track the drift autonomously for at least
first 5000 drift epochs (Fig.4b). However, as the drift was further increased, the
CRBM was unable to compensate. At around 6500%" drift epoch, the abrupt
drift step (caused by a malfunction in the reference electrode [8]) resulted the
CRBM to fail completely as expected. Sets of 400 test samples for each class
were also used to evaluate the autocalibration by the CRBM at different drift
epochs. Classification accuracy degraded from 100% (at start of the simulation),
to 96.28% (after 4000 epochs), and to 89.83% (after further 2000 epochs).

To highlight the importance of the adaptivity feature, two trained but sub-
sequently non-adaptive neural classifiers, namely another SLP and a multilayer
perceptrons (MLP) network, were used as benchmarks. Both classifiers were
trained and fed with the same datasets as the combined CRBM and SLP. Af-
ter 20000 training epochs, the SLP achieved a mean square error (MSE) of
1.378 x 10~! and an accuracy of 95.20%, as this is a not a linearly-separable task.
As predicted, the SLP lost track of the drift over time (Fig.4c). Its accuracy
dropped to 86.53% and to 78.80% at 40000*" and 6000 epochs respectively.
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A 3-layer MLP was employed and had 7 neurons in each hidden layer. The
MSE was 1.102 x 10~* and the classification accuracy was 100% after 20000
training epochs. Fig.4d depicts the response of the MLP’s output unit to the
drifting data. A sharper fall in the response was observed and this could be
explained by the use of higher-order (hence better-defined) hyperplanes by the
MLP, as compared with the SLP. When tested with datasets at different drift
epochs, the MLP’s accuracy dropped to 85.66% and to 74.18% at 40000*" and
6000*" epochs respectively, again falling more drastically than the SLP.

5 Conclusion

We have investigated sensor modelling on non-Gaussian data distributions with a
CRBM in two separate simulations. The reconstructions were good and test data
classification 100% accurate. Additionally, we also applied the combined CRBM
and SLP to real drifting pH data in a dynamic environment. Simulation result
showed that the CRBM with the proposed configuration was able to track drift
for the first 5000 drift epochs but subsequently lost track (due to the use of fixed
learning rate) as the drift increased further. The drift simulation was rerun with
two benchmarks (SLP and MLP). The results showed that the adaptive CRBM
could out-perform them. This is primarily because the benchmarks were not in
any way adaptive to drift. As seen above, the learning rate can play a crucial
role in ensuring that an appropriate level of adaptation occurs. Thus, our future
work will be implementating an adaptive learning rate in the CRBM.
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