
Applying the Episodic Natural Actor-Critic
Architecture to Motor Primitive Learning

Jan Peters1, Stefan Schaal1

University of Southern California, Los Angeles CA 90089, USA

Abstract. In this paper, we investigate motor primitive learning with the
Natural Actor-Critic approach. The Natural Actor-Critic consists out of
actor updates which are achieved using natural stochastic policy gradients
while the critic obtains the natural policy gradient by linear regression.
We show that this architecture can be used to learn the “building blocks
of movement generation”, called motor primitives. Motor primitives are
parameterized control policies such as splines or nonlinear differential equa-
tions with desired attractor properties. We show that our most modern
algorithm, the Episodic Natural Actor-Critic outperforms previous algo-
rithms by at least an order of magnitude. We demonstrate the efficiency
of this reinforcement learning method in the application of learning to hit
a baseball with an anthropomorphic robot arm.

1 Introduction

One of the major challenges in both action generation for robotics and in the un-
derstanding of human motor control is to learn the “building blocks of movement
generation”, called motor primitives. Motor primitives are parameterized control
policies such as splines or nonlinear differential equations with desired attractor
properties. While a lot of progress has been made in teaching parameterized mo-
tor primitives using supervised or imitation learning, the self-improvement by
interaction of the system with the environment remains a challenging problem.

However, despite being the most general framework for discussing the learn-
ing of motor primitives for robotics, most of the methods proposed in the re-
inforcement learning community are either not scalable or cannot deal with
parameterized policies. Policy gradient methods are a notable exception to this
statement. They have rather strong convergence guarantees, even when used in
conjunction with approximate value functions, and recent results created a the-
oretically solid framework for policy gradient estimation from sampled data [1].
However, even when applied to simple examples with rather few states, policy
gradient methods often turn out to be quite inefficient [2], partially caused by
the large plateaus in the expected return landscape where the gradients are small
and often do not point directly towards the optimal solution.

Similar as in supervised learning, the steepest ascent with respect to the
Fisher information metric [3], called the ‘natural’ policy gradient, turns out
to be significantly more efficient than normal gradients. Such an approach was
first suggested for reinforcement learning as the ‘average natural policy gradient’
in [2], and subsequently shown in preliminary work to be the true natural policy
gradient [4, 5], work which resulted into the Natural Actor-Critic which will be
used in this paper for optimizing motor primitives with application in robotics.
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2 Natural Actor-Critic

2.1 Markov Decision Process Notation and Assumptions

For this paper, we assume that the underlying control problem is a Markov
Decision Process (MDP) in discrete time with continuous state set X = R

n, and
a continuous action set U = R

m. The system is at an initial state x0 ∈ X at
time t = 0 drawn from the start-state distribution p(x0). At any state xt ∈ X at
time t, the actor will choose an action ut ∈ U by drawing it from a stochastic,
parameterized policy π(ut|xt) = p(ut|xt, θ) with parameters θ ∈ R

N , and the
system transfers to a new state xt+1 drawn from the state transfer distribution
p(xt+1|xt,ut). The system yields a scalar reward rt = r(xt,ut) ∈ R after each
action. We assume that the policy πθ is continuously differentiable with respect
to its parameters θ. For each considered policy πθ, a state-value function V π(x),
the state-action value function Qπ (x,u) exist and are given by

V π(x) = Eτ

{∑∞
t=0γ

trt

∣∣x0 = x
}

, Qπ (x,u) = Eτ

{∑∞
t=0γ

trt

∣∣x0 = x,u0 = u
}

,

where γ ∈ [0, 1[ denotes the discount factor, and τ a trajectory. It is assumed
that some basis functions φ(x) are given so that the state-value function can be
approximated with linear function approximation V π(x) = φ(x)T v. The general
goal is to optimize the normalized expected return

J(θ) = Eτ

{
(1 − γ)

∑∞
t=0γ

trt

∣∣ θ
}

=
∫

X
dπ(x)

∫
U
π(u|x)r(x,u)dxdu

where dπ(x) = (1 − γ)
∑∞

t=0 γtp(xt = x) is the discounted state distribution.

2.2 Actor Improvements with Natural Policy Gradients

Actor-Critic and many other policy iteration architectures consist of two steps,
a policy evaluation step and a policy improvement step. The main requirements
for the policy evaluation step are that it makes efficient usage of experienced
data. The policy improvement step is required to improve the policy on every
step until convergence while being efficient.

The requirements on the policy improvement step rule out greedy methods
as, at the current state of knowledge, a policy improvement for approximated
value functions cannot be guaranteed, even on average. ‘Vanilla’ policy gradient
improvements (see e.g., [1]) which follow the gradient ∇θJ(θ) of the expected
return function J(θ) (where ∇θf = [∂f/∂θ1, . . . , ∂f/∂θN ]) denotes the deriva-
tive of function f with respect to parameter vector θ) often get stuck in plateaus
as demonstrated in [2]. Natural gradients ∇̃θJ(θ) avoid this pitfall as demon-
strated for supervised learning problems [3], and suggested for reinforcement
learning in [2]. These methods do not follow the steepest direction in param-
eter space but the steepest direction with respect to the Fisher metric given
by ∇̃θJ(θ) = G−1(θ)∇θJ(θ), where G(θ) denotes the Fisher information ma-
trix. It is guaranteed that the angle between natural and ordinary gradient is
never larger than ninety degrees, i.e., convergence to the next local optimum can
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be assured. The ‘vanilla’ gradient is given by the policy gradient theorem (see
e.g., [1]),

∇θJ(θ) =
∫

X
dπ(x)

∫
U
∇θπ(u|x) (Qπ(x,u) − bπ(x)) dudx, (1)

where bπ(x) denotes a baseline. [1] showed that the term Qπ(x,u) − bπ(x) in
Eq. (1) can be replaced by a compatible function approximation fπ

w(x,u) =
(∇θ log π(u|x))T w ≡ Qπ(x,u) − bπ(x), parameterized by the vector w, without
affecting the unbiasedness of the gradient estimate and irrespective of the choice
of the baseline bπ(x). Thus, we have an estimate of the policy gradient as

∇θJ(θ) =
∫

X
dπ(x)

∫
U
π(u|x)∇θ log π(u|x)∇θ log π(u|x)T dudx w = Fθw.

as ∇θπ(u|x) = π(u|x)∇θ log π(u|x). Extending Kakade [2], we could show that
Fθ is indeed the true Fisher information matrix [4,5]. Thus, the natural gradient
can be computed as

∇̃θJ(θ) = G−1(θ)Fθw = w. (2)

Therefore we only need estimate w and not G(θ). The resulting policy improve-
ment step is thus θi+1 = θi + αw where α denotes a learning rate.

2.3 Critic Estimation with Compatible Policy Evaluation

The critic evaluates the current policy π in order to provide the basis for an
actor improvement, i.e., the change Δθ of the policy parameters. As we are
interested in natural policy gradient updates Δθ = αw, we wish to employ
the compatible function approximation fπ

w(x,u) in this context. At this point,
a most important observation is that the compatible function approximation
fπ
w(x,u) is mean-zero w.r.t. the action distribution, i.e.,

∫
U
π(u|x)fπ

w(x,u)du =
wT

∫
U
∇θπ(u|x)du = 0, since from

∫
U
π(u|x)du = 1, differention w.r.t. to θ

results in
∫

U
∇θπ(u|x)du = 0. Thus, fπ

w(x,u) represents an advantage function
Aπ(x,u) = Qπ(x,u) − V π(x) in general. The advantage function is essentially
different from the state-action value function and cannot be learned with TD-like
bootstrapping without knowledge of the value function [4].

The critic’s parameters can be determined by summing up Bellmans’ equa-
tions such as Qπ(x,u) = Aπ(x,u) + V π(x) = r (x,u) + γ

∫
X
p(x′|x,u)V π(x′)dx′

along a sample path and inserting Aπ(x,u) = fπ
w(x,u), we obtain

∑N−1
t=0 γtAπ(xt,ut) =

∑N−1
t=0 γtr(xt,ut) + γNV π(xN ) − V π(x0) (3)

It is fairly obvious that the last term disappears for N → ∞ or episodic tasks
(where r(xN−1,uN−1) is the final reward); therefore each roll-out would yield
one equation. If we furthermore assume a single start-state, an additional scalar
offset suffices. Thus, we get a straightforward regression problem:∑N−1

t=0 γt∇ log π(ut,xt)T w + J =
∑N−1

t=0 γtr(xt,ut) (4)

with exactly dim θ + 1 unknowns. This means that for non-stochastic tasks we
can obtain a gradient after dim θ + 1 rollouts. The complete algorithm is shown
in Table 1.
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Table 1: Episodic Natural Actor-Critic Algorithm (eNAC)
Input: Parameterized policy π(u|x) = p(u|x, θ) with

initial parameters θ = θ0, its derivative ∇θlogπ(u|x).
For updatek = 1, 2, 3, . . . do

For episodee = 1, 2, 3, . . . do

Execute Rollout: Draw initial state x0 ∼ p(x0).
For t = 1, 2, 3, . . . , N do

Draw action ut ∼ π(ut|xt),
observe next state xt+1∼ p(xt+1|xt,ut),
and reward rt= r(xt,ut).

end.

end.

Critic Evaluation (Episodic): Determine value function

J = V π(x0), compatible function approximation fπ
w(xt,ut).

Update: Determine

basis functions: φk =
[∑N

t=0 γt∇θ log π(ut|xt)T , 1
]T

;

reward statistics: Rk =
∑N

t=0 γtr;

Actor-Update: When the natural gradient is converged,

update the policy parameters: θk+1 = θk + αwk+1.

6: end.

3 Evaluations and Application to Motor Primitives

In this section, we compare the episodic Natural Actor-Critic (eNAC) on motor
primitives with previous algorithms and evaluate it in motor learning.

3.1 Comparisons for Motor Primitive Policies

In this section, we first discuss how motor plans can be represented and then
how we can bring these into the standard reinforcement learning framework.
For this purpose, we consider two forms of motor plans, i.e., (1) spline-based
trajectory plans and (2)nonlinear dynamic motor primitives introduced in [6].
Spline-based trajectory planning is well-known in the robotics literature [6]. A
desired trajectory is represented by piecewise connected polynomials, i.e., we
have yi (t) = θ0i + θ1it + θ2it

2 + θ3it
3 in t ∈ [ti, ti+1] under the constraints

that both yi (ti+1) = yi+1 (ti+1) and ẏi (ti+1) = ẏi+1 (ti+1). A given tracking
controller, e.g., a PD control law or an inverse dynamics controller, ensures that
the trajectory is tracked well. For nonlinear dynamic motor primitives, we use
the approach developed in [6] where movement plans (qd, q̇d) for each degree of
freedom (DOF) of the robot are represented in terms of the time evolution of the
nonlinear dynamical systems q̈d,k = h(qd,k, zk, gk, τ, θk) where (qd,k, q̇d,k) denote
the desired position and velocity of a joint, zk the internal state of the dynamic
system, gk the goal (or point attractor) state of each DOF, τ the movement
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Fig. 1: This figure shows different experiments with motor task learning. In
(a,b), we see how the learning system creates minimum motor command goal-
achieving plans using both (a) splines and (b) motor primitives. For this prob-
lem, the natural actor-critic methods beat all other methods by several orders
of magnitude. In (c,d), the plan has to achieve an intermediary goal.

duration shared by all DOFs, and θk the open parameters of the function h.
The equations used in order to create motor primitives are given in [6].

In order to make the reinforcement framework feasible for learning motor
primitives, we need to add exploration to the respective motor primitive frame-
work, i.e., we need to add a small perturbation εd,k ∼ N (0, σ2) with exploration
rate σ2 to each motor primitive output so that ¨̂qd,k = q̈d,k + εd,k where ¨̂qd,k

denotes the target output. By doing so, we obtain a stochastic policy.
Initially, we compare the different policy gradient methods in motor primi-

tive planning tasks using both spline-based and dynamical system based desired
trajectories. In Figure 1 (a) and (b), we show a comparison of the presented
algorithms for a simple, single DOF task with a reward of rk(x0:N , u0:N ) =∑N

i=0 c1q̇
2
d,k,i + c2(qd;k;N − gk)2; where c1 = 1, c2 = 1000 for both splines and

dynamic motor primitives. In Figure 1 (c) and (d) we show the same with an ad-
ditional punishment term for going through a intermediate point pF at time F ,
i.e., rk(x0:N , u0:N) =

∑N
i=0 c̃1q̇

2
d,k,i+ c̃2(qd;k;N −gk)2+ c̃2(qd;F ;N−pF )2. It is quite

clear from the results that the natural actor-critic methods outperform both the
vanilla policy gradient methods as well as finite difference gradient methods.
From this comparison, we can conclude that natural actor-critic methods are
the best suited for motor primitive learning.

3.2 Robot Application: Motor Primitive Learning for Baseball

We also evaluated the same setup in a challenging robot task, i.e., the planning
of these motor primitives for a seven DOF robot task using our SARCOS Master
Arm. The task of the robot is to hit the ball properly so that it flies as far as
possible; this game is also known as T-Ball. The state of the robot is given
by its joint angles and velocities while the action are the joint accelerations.
The reward is extracted using color segment tracking with a NewtonLabs vision
system. Initially, we teach a rudimentary stroke by supervised learning as can
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Fig. 2: This figure shows (a) the performance of a baseball swing task when using
the motor primitives for learning. In (b), the learning system is initialized by
imitation learning, in (c) it is initially failing at reproducing the motor behavior,
and (d) after several hundred episodes exhibiting a nicely learned batting.

be seen in Figure 2 (b); however, it fails to reproduce the behavior as shown
in (c); subsequently, we improve the performance using the episodic Natural
Actor-Critic which yields the performance shown in (a) and the behavior in (d).
After approximately 200-300 trials, the ball can be hit properly by the robot.

4 Conclusion

In this paper, we have summarized novel developments in policy-gradient rein-
forcement learning, and based on these, we have designed a novel reinforcement
learning architecture, the Natural Actor-Critic algorithm. We compare both al-
gorithms and apply the latter on several evaluative benchmarks as well as on a
baseball swing robot example.
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