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Abstract. A method for tuning MLP learning parameters in an ensemkdsifikx
framework is presented. No validation set or cross-védid@echnique is required
to optimize parameters for generalisability. In this pager technique is applied
to face recognition using Error-Correcting Output Codingtatrato solve multi-
class problems.

1 Introduction

In the past decade, the method of multiple classifiestesys (MCS) has been
developed to improve classifier accuracy and efficiehndprmally, the idea in MCS
is that for some complex classification problems itynie better to combine
relatively simple classifiers (base classifiers) hwiiverse opinions rather than
designing a single complex classifier. If classifiers moetoo well correlated and a
suitable combining rule can be found, it has been shihah simpler and more
accurate systems may result. A Multi-layer perceptrohRMwith random starting
weights is a suitable base classifier since randoioisags shown to be beneficial in
the MCS context. Random selection has been succesafypljed to training sets
(Bootstrapping), to feature sets (random subsets [1]) andutput labels [2].
Traditional MLP problems of local minima and computagioslowness may be
alleviated by the MCS approach of pooling together thesibes obtained from
locally optimal classifiers, but there is still theplem of tuning base classifiers.
MLPs make powerful classifiers that may provide supeperformance
compared with other classifiers, but are often ceédi for the number of free
parameters. Most commonly, parameters are set véthelp of either a validation set
or cross-validation technigues [3]. However, theredgunarantee that a pseudo-test
set is representative, and for many problems theresigficient data to rely on this
approach. Cross-validation can also be time-consumiddsed. In this paper, we
present a base classifier tuning technique that hasopstyibeen extensively tested
on benchmark problems and on face identification [4¢idfamages are a popular
source of biometric information since they are retdy easy to acquire. However,
automated face recognition systems often perform pamty improving them is
known to be a difficult task. Ensemble methods are amtbegbest-performing
solutions to achieving high face recognition rates [IBg Error-Correcting Output
Coding (ECOC) method is applied to face identification arification in Section 4.
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2 Two-class problems and diversity measures

For a two-class supervised learning problem, assumelieé dgiven to each pattern
Xm is denoted byw, = f(X;) wherem =1 ...u4 andw, 7 {0,1}. Herefis the
unknown function that maps, to the target labek,. It is assumed that there @e
parallel single hidden-layer MLP base classifiers aatiXh is aB-dimension vector
formed from the outputs of the classifiers &, i=1 ...B) applied to the original
patterns which in general are real-valued and of arlittamension. Therefore, we
may represent thath pattern by

X = (§mar€mzsre+16ms) @)
where& {x5, x, X}, defined by
x* [0 [0,1] is the soft decision in the interval
x 0{0,1} is the hard (binary) decision formed by hardenixig

x% 0 {0,1} is the binary decision conventlonally used forlcotating d|verS|ty
measures, where a correct classification is |nd|czi1¢d<mI =1 if and only ifx" =

U
Let thejth classifier output for th@th pattern using %in (1) be ap-dimensional

binary vector given bwzj where p = 1,.. 4. The following counts are defined for
ith andjth classifiers

7

N® => s Oy, abf0,1}, @w'=x",¢°=x" )
p=1

where L is logical AND andX? is the logical complement ot

The Q statistic is a pair-wise diversity measure [8} ik defined by

B-1 B NllNOO_N01N10
B(B 1)2 ZQU ! Qij = N11N00+N01N10 )

i=1 j=i+1
Note from (3), that target labels are not explicitlgarporated in defining Q. Now
consider a pair-wise measure that incorporates diversilyaccuracy and which is
calculated over patterns between the two classes usimgscas follows

~ B
No' =20 > @ m Oy @, # @, 4
n j=1

In (4) themth pattern chosen from one class is paired with all pattef the other
class. Consider a measug interpreted in [6] as a measure of class separability
(more details in [4]) and defined by

g ==>0,,0,>0 ®)
i
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1 00 1 00
where g’ :i N.o _ N, K = N, + N,
n ]
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The relationship between ensembles and diversity memssimot well understood
and the consensus is that such measures cannot preskatt#de performance [5].
However, in [4] the class separability measure defingh) was shown to correlate
well enough with ensemble test error to predict optinaak classifier complexity.

3 Multi-classand Error-correcting Output Coding (ECOC)

Error-Correcting Output Coding (ECOC) is a well-estalgisimethod [7] for solving
multi-class problems by decomposition into complement&oyclass problems. It is
a two-stage process, coding followed by decoding. The cademis defined by the
binaryk x Bcode word matrix Z that has one row (code word) fohes& classes,
with each column defining one of B sub-problems that aisdifferent labeling.
Assuming each element of Z is a binary variabletraiaing pattern with target class
a (1=1... K)is re-labeled as clag¥, if Z; =z and as clag®, if Zj = z . The two
super-classe®; andQ, represent, for each column, a different decompositiadheo
original problem. For example, if a column of Z is givn[0 1 0 0 1J, this would
naturally be interpreted as patterns from class 2 andng lassigned t@; with
remaining patterns assigned®g. This is in contrast to the conventional One-per-
class (OPC) code, which can be defined by the diagordicode matrix Z; = 1 if
and only if i = j}.

In the test phase, thn classifier produces an estimated probabiﬁgy that a

test pattern comes from the super-class defined hihtdecomposition. Thpth test
pattern is assigned to the class that is representétebylosest code word, where
distance of theth pattern to théh code word is defined as

B
D, =>a;[Z; -G, 1=1.k ()
j=1

where a; allows for Ith class andth classifier to be assigned a different weight.
Hamming decoding is denoted in (6) fy=1, § =x) and > norm decoding by

{a=1, § =x) wherex andx®are defined in (1). Many types of decoding are possible,

but theoretical and experimental evidence indicates thatyiding a problem-
independent code is long enough and base classifier isfpbeeough, performance
is not much affected. In this paper, a random code is u$edh is shown to perform
almost as well as a pre-defined code, optimised foriits-eorrecting properties [8].
Issues surrounding design of optimal codes were discussed in [9]
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4 EXPERIMENTSON FACE DATABASES

In the first set of experiments on face identificatignis shown that the number of
epochs for optimal generalization may be selected udass separability measure
defined in (5). The second set of experiments applies E©Qke problem of face
verification
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Figure 1. Test errog’, Q for ORL 50/50 database using 16 hiddexle bas
classifiers for [0,20,40] % classification noise.

The ORL database (Olivetti Research Laboratory http//www.cam-orludg,
consists of four hundred images of forty individual facéh vgome variation in
lighting, facial expression, facial hair, pose and sp&tacThe background is
controlled with subjects in an upright frontal positiaithough small variation in
rotation and scale is allowed. The advantage of thiabdst is that it can be used
without need for face detection algorithm or any oftrerprocessing, so that there is
a fairer comparison with the results obtained by ottesearchers. Although it is
possible to use gray levels directly, normally featunesfirst extracted. A popular
approach is Linear Discriminant Analysis (LDA) whighused in our experiments.
We compute the between-class scatter ma&ignd the within-class scatter matrix,
Sw. The objective of LDA is to find the transformatiomatrix, W, that maximises

the ratio of determinantsfwTst |/|wTsz| . W,y is known to be the solution of the

following eigenvalue problenss - Sw1 = 0 where/ is a diagonal matrix whose
elements are the eigenvalues of ma8iXS; Since in practic&y is nearly always
singular, dimensionality reduction is achieved by Priricipamponents Analysis
(PCA) before solving the eigenvalue problem.

In our experiments, images have been projected todortgnsions using PCA
and subsequently to a twenty-dimension feature space uBIAg ILis treated as a
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forty-class face identification problem with the fduindred images randomly split
into training/testing patterns.

Figure 1 shows test error rates, Q (defined in (3) and (5)) for 50/50 random
train/test split with 16 hidden node base classifiere @ffect of classification noise
[0 20 40] % (class label selected at random from othesse) demonstrates the
ability to predict the number of epochs at which bdassdier test error is minimum.
The correlation o6’ with base classifier test error is significant @tinfive percent
confidence that the correlation would not be as lasgia@ observed value by random
chance). Each combination of training epoch and nigisepeated twenty times,
giving 10 x 3 x 20 runs. ECOC with random 40 x 200 code is used ® 40lelass
learning problem, and 200 base classifiers are trained Wswenberg-Marquardt
algorithm with default parameters.

The extended M2VTS (XM2VTS) database contains 295 subjects. The subjects
were recorded in four separate sessions uniformly digédbover a period of 5
months, and within each session a number of shoestaken including botfrontal-
viewandrotation sequences. Further details of this database can beifo[i]. The
experimental protocol (Lausanne protocol) given in [11] jplesa framework within
which the performance of the XM2VTS database can basured. The protocol
assigns 200 clients and 95 impostors. Two shots of eashorsdsr each subject's
frontal or near frontal images are selected to compeseconfigurations. We used
the first configuration, in which each client has &iritng, 3 evaluation and 2 test
images. The impostor set is partitioned into 25 evaluatiod 70 test impostors.
Within the protocol, the verification performance nseasured using the false
acceptance (FA) and the false rejection (FR) raieseSho validation is required, we
join training and validation sets.

The face images differ in both shape and intensitystsape alignment
(geometric normalisation) andtensity correction(photometric normalisation) can
improve performance. Our approach to geometric normalisas based on eye
position, usingmanually localiseaye coordinates to eliminate the dependency of the
experiments on processes which may lack robustnesgphBtwmetric normalisation
we have used histogram equalisation. For our experimemisgeis have been
projected to a lower dimension feature space using PCALBrdas described in
[12], so that each image is represented by a vectori®@helements. Each clienis
represented by a set ¥f N ECOC classifier output vectors, thatXs= {x;5" | |
=1,2,...N},whereN is the number dth client patterns available for training. In order
to test the hypothesis that the client claim is anticethe average distanci(x’)
based orL; norm is adopted, that is

1 N B
d; (x*) = _Z Z

N = j=1
where ¥ is thejth binary classifier output for the probe image afiff is thejth
classifier output for théth member of class The distance is checked against a
threshold, to determine if the client's claim is @ted or rejected. To find the
required threshold for verification used with the distameasure defined in (7),
|[FA+FR| on the validation plus training set is minimised. Threatices of the probe

(7)
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image to all images in the combined set are found aabehiks assigned to the image
that has minimum distance to the probe image.

A two-class MLP base classifier having one hiddeerapntaining 199 input
nodes and 35 hidden nodes was used with ECOC. The Back-propaggiorithm
with fixed learning rate, momentum and number of epoclssusad for training. The
error rates FA and FR were found to be 1.3% and 0.8% respedi 2], which is
among the best results for XM2VTS using this protocol [13].

4 Conclusion

ECOC with MLPs as base classifiers has been suotgsspplied to problems in
face identification and verification. MLPs are powelfut have the disadvantage that
parameter tuning is difficult. The proposed approach inpdyer enables the optimal
number of training epochs of base classifier MLPs d@osblected based only on
performance of the training set, thereby obviatingrtéed for validation.
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