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Abstract. A recently proposed nonlinear extension of Granger causality
is used to map the dynamics of a neural population onto a graph, whose
community structure characterizes the collective behavior of the system.
Both the number of communities and the modularity depend on transmis-
sion delays and on the learning capacity of the system.

1 Introduction

Identifying causal relations among simultaneously acquired signals is an impor-
tant problem in computational time series analysis. One major approach to
analyze causality between two time series is to examine if the prediction of one
series could be improved by incorporating information of the other, as proposed
by Granger [1] in the context of linear regression models of stochastic processes.
In particular, if the prediction error of the first time series is reduced by includ-
ing measurements from the second time series in the linear regression model,
then the second time series is said to have a causal influence on the first time
series.

In this paper we propose the use of causal interactions, detected as described
above, to map a network of spiking neurons with synaptic plasticity, which mim-
ics a sensorial cortex, onto a graph, in order to characterize collective behavior,
and to mine patches of interdependent neurons by means of the search of com-
munity structures in the graph [2].

2 Discovering Causal Communities

It is well known how synaptic plasticity models the connections between the
neurons on the basis of the activity [3]: that is the dynamics and the functional
properties of the networks are tightly connected with the architecture. In our
view causality relations are the key of collective behavior, and constitute a suit-
able way to detect functional communities [4]. We thus first look for causal
interactions, then we use this information to discover community structures in
the neural network.

2.1 Granger Causality

We recall here the key concepts, while referring the reader to [5, 6] for all the
details. As stated in the Introduction, the notion of Granger causality between
two time series examines if the prediction of one series could be improved by
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incorporating information of the other. The interactions between individual
neurons in a network are strongly nonlinear: we thus address the problem of
nonlinear Granger causality by means of the generalization of a radial basis
function approach. It is important to point out that not all nonlinear prediction
schemes are suitable to evaluate causality between two time series, since they
should be invariant if statistically independent variables are added to the set of
input variables.

2.2 Community Discovery Algorithm

A hierarchical structure of modules characterizes the topology of most of real-
world networked systems [7, 8]. In social networks, for instance, these modules
are densely connected groups of individuals belonging to social communities.
Modules (called also community structures) are defined as tightly connected sub-
graphs of a network, i.e. subsets of nodes within which the density of links is
very high, while between which connections are much sparser. These tight-knit
modules constitute units that separately (and in parallel) contribute to the col-
lective functioning of the network. For instance, the presence of subgroups in
biological and technological networks is at the basis of their functioning. Hence
the issue of detecting and characterizing module structures in networks received
considerable amount of attention .

Many methods have been proposed to partition a group into communities.
A central quantity used by hierarchical clustering techniques is the modularity,
which was introduced by Girvan and Newman [2, 9, 10] in connection to an al-
gorithm able to produce a hierarchy of subdivisions in a network, from a single
agglomerate to isolated nodes. The modularity Q (see [2] for the mathematical
definition) is a measure of the correlation between the probability of having an
edge joining two sites and the fact that the sites belong to the same modules.
It is clear that, if a partition in a fixed number of subgroups of the networks
is requested, the best solution is obtained minimizing the number of edges con-
necting vertices belonging to different subgroups (or minimizing the number of
vertices belonging to the same subgroup). A good division into communities is
the one in which the number of edges between vertices belonging to the same
group is significantly greater than the number expected by a random distri-
bution of edges. As an example of a network, the three-community structure
resulting from the analysis of a reduced version of the population of excitatory
and inhibitory neurons described in the next sessions is reported in figure 1.

We then address the problem of detecting communities in a network in the
following way: to find the optimal number of clusters the modularity Q is cal-
culated at different values of nc, the proposed number of modules. Once nc is
determined, the optimal clusterization is found maximizing an objective function
called ratio association, as described in [11].
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Fig. 1: Visualization of a reduced network of neurons, divided into three com-
munities. Larger nodes indicate inhibitory neurons.

3 Application: Network with delays and spike-time de-
pendent plasticity

We test our procedure on data obtained with the neural network model proposed
by Izhikevich [12]. It consists of 1000 randomly connected neurons with spike-
timing-dependent plasticity (STDP) and conduction delays. We introduced in
the model the possibility of fixing the maximum delay, varying it from 0 to
30 ms. As shown by Izhikevich, the rhythmic activity of the spiking model
evolves with time, presenting delta frequency oscillations at the very beginning.
Then, as synaptic weights evolve according to STDP, uncorrelated Poissonian
activity, and then gamma frequency oscillations, appear. The mechanism gen-
erating these rhythms is called PING (pyramidal-interneuron network gamma)
[13]. This is explained by individual excitatory cells which fire at or near gamma
frequency, and their active participation is crucial: the excitatory cells drive and
synchronize the inhibitory ones, which in turn gate and synchronize the exci-
tatory ones. It is clear how in this case there is a whole activity of functional
communities and causal interactions going on.

For each of the three cases listed above, we extracted time series of length
1000 points, from the PSP of any presynaptic neuron, and from the membrane
potential of the corresponding postsynaptic neurons. Doing this we take also
into account the effects of the external input on the subthreshold behavior of
the neurons [14]. The series were checked for covariance stationarity with a
Dickey-Fuller test (p < 0.01). The Granger causality algorithm was then applied.
We identified statistically relevant interactions performing an F-test (Levene
test) of the null hypothesis that the error on the prediction of one series is not
decreased when information on the other series is added to the model. The
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Fig. 2: The three phases displayed by the model as time, and thus STDP,
evolves. Top: delta rhythm. Middle: uncorrelated Poissonian activity. Bottom:
emergency of gamma rhythm.

neurons connected by significant causal interactions were marked as connected
in our causal adjacency matrix, which was then analyzed by the community
discover algorithm described in the previous section.
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Fig. 3: The averaged modularity as a function of the proposed number of com-
munities, for different values of the transmission delays, for the three phases.
Left: delta rhythm. Center: uncorrelated Poissonian activity. Right: gamma
rhythm.
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Figure 3 displays the average modularity as a function of the number of com-
munities. The number of communities which maximizes the modularity varies
with time. At the beginning, when there is a dominant delta rhythm, the opti-
mal number of causal communities is around 60. Then, as the synaptic weights
evolve according to STDP, this number reaches 70. But, when gamma rhythms
begin to emerge, it goes back to around 30. This is because the increased syn-
chronization of inhibitory and excitatory neurons leads to the formation of a
lower number of clusters with common activity. Furthermore, we can see that
the number of communities is not affected by the maximum delay in the interac-
tions. This is explained by the fact that our model for detecting causality spans
many past values of the time series, thus detecting causal interactions also within
polychronous groups, that is groups of neurons which maintain a fixed, though
not synchronous, pattern of firing times. On the other hand, the modularity is
affected by the internal delays, and it displays a maximum around D = 15ms.
This behavior can be explained if one considers that, for very small delays, we
have no polychronous groups, and not all the possibly relevant interactions are
taken into account. On the other hand, for large delays, we have many interac-
tions at different times, thus adding interactions which don’t contribute to form
new communities but add some ”noise” to the adjacency matrix. This preferred
value of internal delays has also been observed when causal interactions were
investigated when external inputs with different spatiotemporal characteristics
were presented to the neural network.

Linear Granger causality has been successfully applied to networks of neurons
in a ”brain-based device” [15]. But when, as in the present case, the presynaptic
and postsynaptic activity of the neurons is simulated with more biologically plau-
sible equations (leaky integrate and fire, or conductance-based), we believe that
the strong nonlinear character of the neural behavior should not be neglected.
Indeed the application of linear Granger causality to the model described above
still gave rise to a plausible network structure, but with significantly lower val-
ues of modularity and a less defined profile for different values of delays and
community number.

4 Conclusions

We have shown that nonlinear Granger causality measures may be successfully
applied to map a complicated dynamical system, such as a population of in-
hibitory and excitatory neurons, onto a graph whose edges connect pairs of
neurons with significant causal relations. By subsequently analyzing the com-
munity structures in the graph obtained, we found interesting insights on the
collective behavior of the system. In particular, we found that the delays don’t
change the number of communities, but influence the modularity, that is to what
extent these communities are interconnected. On the other hand, the number
of communities evolves with time as the process of learning models the synaptic
weights.

Our findings confirm the potentiality of the notion of causality in the analysis
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of complex systems and the importance of the nonlinear extension of Granger
causality to model them.
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