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Abstract. We consider a class of random process signals which contain
randomly position local similarities representing the texture of an object.
Those repetitive parts may occur in speech, musical pieces and sonar sig-
nals. We suggest a warped time resolved spectrum kernel for extracting
the subsequence similarity in time series in general, and as an example in
biosonar signals. Having a set of those kernels for similarity extraction in
different size of subsequences, we propose a new method to find an opti-
mal linear combination and selection of those kernels. We formulate the
optimal kernel selection via maximizing the Kernel Fisher Discriminant
criterion (KFD) and use Mesh Adaptive Direct Search method (MADS)
to solve the optimization problem. Our method is used for biosonar land-
mark classification with promising results.

1 Problem

Bats can distinguish objects by emitting a series of ultrasound signals (chirps)
that generally sweep covering frequencies from 22 to 100 kHz. Inspired by the
bat biosonar system, researchers have utilized ultrasonic sensing techniques for
mobile robots (biomimetic robots) and tried to classify different textures and
landmarks using received echo signals. We used a sonar head system consisting
of three ultrasound transducers, one for emission chirp signals (Polaroid 7000),
two for reception (Polaroid 6000) and tried to classify three trees as landmarks
(Fig. 2.a). The emitted pulse was a linearly frequency modulated chirp sweeping
from 20kHz to 120kHz in 1 ms. The reflected echo contains the information about
the geometry of the tree. We passed the reflected echoes through a bank of 10
gammatone filters between 20 kHz and 120 kHz (Fig. 1.a). Then, they were
delivered to half-wave rectifiers. After frame blocking (50% overlap for frames),
we used a Hamming window. At last, we made a feature matrix of the average
energy of each channel of gammatone filter bank in each frame. The task is to
classify the echoes of each object using those features. As we see in Fig. 1.b,
despite the seemingly randomness of those preprocessed signals, there are some
local similarities (shown by p) in echoes from one tree. We should find the size
of subsequences of the time series independent of the positions of occurrences
that have maximum similarities in echoes of each object. The intuition behind
our idea is that the texture and structure of the objects and, as an example, the
size of leaves or branches, and so the energy reflected by them can be related to
the size of the similar subsequence lying in the signals. Inspired by the solutions
for a similar problem known as remote homology detection in protein families
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Fig. 1: (a) Block diagram of the preprocessing steps for reflected echoes. (b) The
energy spectrum in each time frame for Ficus and Schefflera trees (output of gammatone
filter centered around 50 kHz). Our suggested spectrum kernel tries to find the local
similarities in window of size p in echoes of one object.

and the work of Lodhi et al. [1], we suggest a kernel called warped time-resolved
spectrum kernel for our classification task.

2 Algorithms

2.1 Warped time resolved spectrum kernel

A time sequence s = s1...sn is a sequence of data points at successive times with
si ∈ �d where 1 ≤ i ≤ n and d is the dimension of data points. We denote
|s| the length of s, s(i − p + 1 : i) the p-length subsequence of s from position
i−p+1 to position i, I|s|p the set of indices defining all the p-long (contiguous or
non-contiguous) subsequence of s: Is

p = {i : i ∈ Np, 1 ≤ i1 < ... < ip ≤ |s|} and
u = si as a subsequence of s in positions given by i = (i1, ..., i|u|). The number
of gaps in the subsequence is gi = (i|u|− i1 +1)−|i|. For example, if we consider
s = s1s2s3s4s5, u = s1s3s5 is a subsequence of s in the positions i = (1, 3, 5) of
length |i| = 3 and gi = 2.

For u ∈ Σp×d, the infinite set of all subsequences with size p and dimension d,
the implicit embedding map φ brings s to a vector space F (φ : s → (φu(s)) ∈ F )
and the u component (u ∈ Σp×d) of our feature vector is: φp

u(s) =
∑

i∈I
|s|
p

ϕu(si)γgi ,

where γ ∈ (0, 1) is a decay factor as a cost for warping (non-contiguousity) in
the time series and ϕ is an implicit map that satisfies:

κp(si, tj) =< ϕu(si), ϕu(tj) > for i ∈ Is
p, j ∈ It

p, u ∈ Σp×d

in which κp is a kernel function that measures the local similarity between two p-
length subsequences si and tj of the time series in consideration. In words, φp

u(s)
is a sum over all similarities between p-long subsequences of s and u. The dot
product of those feature vectors represents the warped-time resolved p-spectrum
kernel :

Kp(s, t) = 〈φp
u(s), φp

u(t)〉 =
∫
Rd×p φp

u(s)φp
u(t)du
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=
∑
i∈Is

p

∑
j∈It

p

γgiγgj
∫

Rd×p ϕu(si)ϕu(tj)du =
∑
i∈Is

p

∑
j∈It

p

κp(si, tj)γgi+gj

As we see from the above equation, the kernel adds all similarity scores be-
tween subsequences, considering their warping. Needless to say, the calculation
of that kernel has a very high computational cost. We use dynamic program-
ming to calculate it in an efficient manner and justifiable time. Considering the
definitions of Is

p and It
p, we express the kernel using a suffix version of that:

Kp(s, t) =
|s|∑
i=1

|t|∑
j=1

∑
(i,j)∈I

s(1:i)
p ×I

t(1:j)
p

κp(si, tj)γgi+gj =
|s|∑
i=1

|t|∑
j=1

KS
p (s(1 : i), t(1 : j)

where:
KS

p (s(1 : i), t(1 : j)) =
∑

(i,j)∈I
s(1:i)
p ×I

t(1:j)
p

κp(si, tj)γgi+gj

We consider s′ = s(1 : |s′|), t′ = t(1 : |t′|), 1 ≤ |s′| ≤ |s| and 1 ≤ |t′| ≤ |t|
(prefixes of s and t). If we add a new data point x to the time series s′, using
the above equation we can calculate Kp(s′x, t′):

Kp(s′x, t′) = Kp(s
′, t′) +

|t′|∑
j=1

KS
p (s′x, t′(1 : j))

We accept a constraint on choosing the kernel function κp(si, tj), we suppose:
κp(si, tj) =

∏p
i=1 κ∗(sii, tji), in which κ∗ is an arbitrary function that measures

the similarity between two data points of the time series. In this study, as
a suitable and arbitrary selection we consider κ∗(sii, tji) = exp −(sii−tji

)2

2σ2 to
measure the similarity between two data points, then:

κp(si, tj) =
∏p

i=1 κ∗(sii, tji) = exp
(
− ||si−tj||2

2σ2

)
That, κp(si, tj) is a gaussian kernel of width σ and suitable for measuring the
local similarity of subsequences in time series. Then, if we add another new data
point y to the time series t′, considering the assumption for κp and the above
definition of KS

p , it can be shown:

KS
p (s′x, t′y) = κ∗(x, y)

∑|s′|
i=1

∑|t′|
j=1 γ|s′|−i+|t′|−j KS

p−1(s
′(1 : i), t′(1 : j))

It means when new points are added, to measure new p-suffix kernel, we must
calculate similarities of p− 1 length subsequences in the suffixes considering the
degrees of warping. To evaluate KS

p recursively, we define:

KSw
p (k, l) =

∑k
i=1

∑l
j=1 γk−i+l−jKS

p−1(s
′(1 : i), t′(1 : j))

Then: KS
p (s′x, t′y) = κ∗(x, y)KSw

p (|s′|, |t′|)
to express the above kernel recursively, we use the relation:

a∑
i=1

b∑
j=1

f(i, j) = f(a, b) +
a−1∑
i=1

b∑
j=1

f(i, j) +
a∑

i=1

b−1∑
j=1

f(i, j) −
a−1∑
i=1

b−1∑
j=1

f(i, j)

let f(i, j) = γk−i+l−jKS
p−1(s

′(1 : i), t′(1 : j)) , a = k and b = l, we have:
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Algorithm: Recursive computation of the warped time resolved spectrum kernel.
KSw

p (k, l) = KS
p−1(s

′(1 : k), t′(1 : l)) + γKSw
p (k, l − 1) + γKSw

p (k − 1, l)

−γ2KSw
p (k − 1, l − 1)

KS
p (s′x, t′y) = κ∗(x, y)(x, y)KSw

p (|s′|, |t′|)
Kp(s′x, t′) = Kp(s′, t′) +

∑|t′|
j=1 KS

p (s′x, t′(1 : j))

KS
0 (s′, t′) = 1 for all s′, t′,

KS
i (s′, t′) = 0, if min(|s′|, |t′|) < i,

Ki(s′, t′) = 0, if min(|s′|, |t′|) < i,

The computation of the kernel follows a dynamic programming technique
with the order of O(p|s||t|). We have recursions over the prefixes of the time
series and the lengths of the subsequences and we do the routine above until
x = s|s| and |t′| = |t|.

To prevent that with larger sizes of subsequences the kernel achieves a higher
similarity score we normalize the kernel, Knorm

i (s, t) = Ki(s,t)√
Ki(s,s)Ki(t,t)

. This

operation scales the similarities in the range [0,1]. In practice and specially in
our classification task, it makes sense to consider the similarity of subsequences
having different sizes and calculate a linear combination of different i-spectrum
kernels with different weighting θi ≥ 0. The weighted kernel is:

K(s, t) =
p∑

i=1

θiKnorm
i (s, t) (1)

Finding suitable values of the parameters θi is a case of more general problem
known as optimal kernel selection. In the following subsection we suggest our
new algorithm to solve this problem.

2.2 Fisher discriminant based optimal kernel selection

The Kernel Fisher Discriminant [2] is a non-linear extension of the Linear Fisher
Discriminant Analysis. Given a set of n+ positive training data χ+ ⊂ R

d and
a set of n− negative data χ− ⊂ R

d, (n = n+ + n−, all data), and a map

φ : R
d → F , the aim is to find a direction w =

n∑
i=1

αiφ(xi) in the feature space

F given by weights α = [α1, ..., αn] which maximizes the separation of the mean
scaled in the feature space and minimizes the variance in that direction. For
that, the criterion J(α) = αT Mα

αT (N+λI)α
should be maximized [2]. The parameter

λ is a regulation factor and M and N (defined in [2] ) are gained in terms of the
kernel matrix K, where Ki,j = k(xi, xj) =< φ(xi), φ(xj) >. If we consider:

D =

[
In+ − 1

n+
1n+1T

n+
0

0 In− − 1
n−

1n−1T
n−

]
n×n

, y =
[

(1/n+)1n+

(−1/n−)1n−

]
n×1
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where 1n and In denote the vector of all ones and the identity operator in R
d,

respectively. It can be proven (not shown here):

αmax = (KDK + λI)−1Ky and Jmax(K) = α
′
maxKy

Jmax(K) = y′K(KD′K + λI)−1Ky (2)

If we consider the variable K as a linear combination of a set of kernel matrices,
in the next step, we try to find the matrix K, which maximizes the above equa-
tion. Considering equations 1 and 2, the problem of finding the optimal kernel
in term of maximizing the Fisher discriminant ratio can be written as:

min f(
l∑

i=1

θiKnorm
i ) = −Jmax(

l∑
i=1

θiKnorm
i )

subject to θ � 0, 1T θ = 1

It is easy to prove the convexity of the above objective function. We suppose
f(x, y) = x′y−1x, h(K) = Ky and g(K) = KD′K+λI, considering the convexity
of f , h and g, we conclude the convexity of f(h, g) and so the above objective
function. Then, any local optimum answer for the objective function is a global
one of that, too. To solve the problem we use a mesh adaptive direct search
(MADS) method. It computes a series of points that get closer and closer to the
optimal point. The algorithm searches a set of random selected points, called a
mesh, around the current point-the point computed at the previous step of the
algorithm. The mesh is formed by adding the current point to a scalar multiple
of a set of vectors called a pattern and the point in the mesh that improves
the objective function becomes the current point at the next step. The routine
continues until a stopping criterion is fulfilled [4].

3 Experiment and results

We gathered the sonar data, 720 echoes for each tree shown in (Fig. 2.a).
After the preprocessing steps for each echo (Fig. 1.a), we have a time series
in which each point is a time frame and its value is an array of the average
energy of each channel of gammatone filter. We selected randomly 100 echoes
of each tree and then calculated Knorm

i (s[m], s[n]) for i ∈ [1, l], m, n ∈ [1, 100]
and σ ∈ {1, 10, 100, 1000} where s[m] and s[n] are the m-th and n-th of pre-
processed echoes and l is the length of the time series (in our experiment 90).
Using the optimal kernel selection noted above, we found the optimal value for
θi in equation 1 and σ and calculated the matrix K:

K(i, j) = K(s[i], s[j]) =
∑l

k=1 θopt
i Knorm

l (s[i], s[j]) i, j ∈ [1, 300]

where s[i] is i-th echo, for Ficus echoes i ∈[1,100], for Bamboo i ∈ [101,200] and
for Schefflera i ∈[201,300]. In this study, we found that suitable values for σ are
in the range [10,100] and for γ (as warping cost) in the range [0.1,.2].

A SVM learns a classification function f(x) of the form:
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Fig. 2: (a) Ficus (left), bamboo (middle) and Schefflera (right) trees are our biosonar
landmarks. (b) The overalaccuracy of classifiers using different numbers of echoes for
testing with the Warped Time-resolved spectrum kernel. (c) The accuracy of classifier
via Template matching using acoustic images of echoes (Wang et al. [5]).

f(x) =
∑

i;xi∈χ+

λiK(x, xi) −
∑

i;xi∈χ−

λiK(x, xi) (3)

where non-negative λi weights are computed during training by maximizing
a quadratic objective function and K(., .) is the kernel. Given this function, a
new data x is predicted to belong to the positive dataset, if the value of f(x) is
positive, otherwise it belongs to the negative dataset. After training the classi-
fier, we used the remaining data (1860 echoes) for testing. Fig. 2a shows the
average accuracy of the classifier based on the number of echoes as observation.
It shows a high accuracy even for a low number of echoes. Comparing with the
previous works of our group (Wang et al. [3, 5]), it shows a notable improve-
ment in accuracy. The best result for classification gained before was through
template matching in 2D biosonar acoustic images (using a 2D Discrete Cosine
Transform). The classification was made via extracting the maximum normal-
ized cross correlation between the acoustic templates (Fig. 2c). As shown in
Fig. 2b, we could get higher accuracy in both single and repeated observations
(even with fewer echoes). With our suggested kernel we could extract patterns
and similarities in the subsequences of time series, considering their warping and
without dependency on the order of those subsequences.
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