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Abstract. The convex optimisation problem involved in fitting a ker-
nel probit regression (KPR) model can be solved efficiently via an itera-
tively re-weighted least-squares (IRWLS) approach. The use of successive
quadratic approximations of the true objective function suggests an effi-
cient approximate form of leave-one-out cross-validation for KPR, based
on an existing exact algorithm for the weighted least-squares support vec-
tor machine. This forms the basis for an efficient gradient descent model
selection procedure used to tune the values of the regularisation and kernel
parameters. Experimental results are given demonstrating the utility of
this approach.

1 Introduction

Assume we are given labelled training data D = {(xi, ti)}`
i=1, where xi ∈ X ⊂

Rd represents a vector of attributes representing the ith example and ti ∈ {0, 1}
represents the desired class label. Kernel probit regression (c.f. [1]) aims to fit
a probabilistic model of the form,

p(yi = 1|xi) = Φ {w · φ(x) + b} where Φ{z} =
1
2

[1 + erf{z}]

and erf(z) = 2π
1
2

∫ z

0
e−t2dt is the error function. The model is constructed in

a feature space, F , defined by a fixed non-linear transformation φ : X → F .
However, rather than specify the transformation explicitly, it is instead induced
by a kernel function K : X × X → R, giving the inner product between vectors
in the feature space, i.e. K(x,x′) = φ(x) · φ(x′) (for a detailed introduction to
kernel learning methods, see e.g. [2]). Any positive definite kernel function may
be used, in this study we will adopt the spherical squared exponential kernel

K(x,x′) = exp
{
−θ‖x− x′‖2

}
(1)

where η is a kernel parameter controlling the sensitivity of the kernel. The
optimal model parameters, (w, b), are given by the solution of a convex penalised
maximum likelihood cost function,

L =
1
2
‖w‖2 − γ

2

∑̀
i=1

[ti log pi + (1− ti) log(1− pi)] , (2)

where γ is a regularisation parameter [3] controlling the bias-variance trade-
off [4]. The representer theorem [5] states that the solution of an optimisation
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problem of this nature is given by an expansion over the training patterns of the
form,

w =
∑̀
i=1

αiφ(x) =⇒ w · φ(xi) =
∑̀
i=1

αiK(xi,x).

The dual parameters of the kernel probit regression machine, (α, b) can be
determined efficiently via an iteratively re-weighted least-squares (IRWLS) pro-
cedure [6]. We begin by forming a univariate quadratic approximation for each
term comprising the negative log-likelihood,

li = −ti log pi−(1−ti) log(1−pi) where pi = Φ(zi) and zi = w ·φ(xi)+b.

The partial derivatives of li with respect to zi are given by

∂li
∂pi

=
t− p

p(p− 1)
and

∂pi

∂zi
=

exp
{
−z2

i

}
√

π

∂li
∂zi

=
exp

{
−z2

i

}
√

π

ti − pi

pi(pi − 1)

and
∂2li
∂p2

i

=
ti
p2

i

+
1− t

(1− pi)2
and

∂pi

∂zi
= −

√
2zi exp

{
−z2

i

}
√

π

∂2li
∂z2

i

= −zi exp
{
−z2

i

} [
ti
p2

i

+
1− t

(1− pi)2

] √
2√
π

A local quadratic approximation of the regularised loss (2) is then given by

L̃ =
1
2
‖w‖2 +

γ

2

∑̀
i=1

βi [ηi − zi]
2 (3)

where

βi =
∂2li
∂z2

i

and ηi = zi −
∂li
∂zi

[
∂2li
∂z2

i

]−1

. (4)

The quadratic approximation (3) represents a weighted least-squares problem,
where the optimal model parameters are given by the solution of a system of
linear equations, [

K + γB 1
1T 0

] [
α
b

]
=

[
η
0

]
(5)

where K = [kij = K(xi,xj)]
`
i,j=1 and B = diag({β−1

1 , β−1
2 , . . . , β−1

` }) [7]. The
training procedure then alternates between updates of the model parameters
(α, b) via (5) and updates of the local quadratic approximation using (4). How-
ever, while an efficient training algorithm for the kernel probit regression model
is easily implemented, a model selection scheme used to select good values for the
kernel and regularisation parameters is less straightforward, and is the subject
of the remainder of this paper.
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2 Model Selection for Kernel Probit Regression

Cross-validation [8] commonly forms the basis for model selection schemes em-
ployed in practical applications of kernel learning methods. Under a k-fold
cross-validation strategy, the data are partitioned into k disjoint subsets of ap-
proximately equal size. Models are then fitted on each of the k combinations
of k − 1 subsets, and the performance of each model evaluated on the unused
subset in each fold. The average performance over the k trials generally provides
a reliable estimate of performance on unseen data. The most extreme form of
cross-validation, known as leave-one-out cross-validation [9, 10] partitions the
data into ` subsets, each consisting of a single example. Fortunately, leave-
one-out cross-validation can be implemented very efficiently in closed form for
weighted least-squares based models (e.g. [11, 12]). These procedures provide
the basis for an efficient approximate leave-one-out method for kernel probit
regression, using the quadratic approximation of the true regularised loss used
in the final iteration of the iteratively re-weighted least-squares procedure (c.f.
[13, 14]). The matrix on the left-hand side of the system of linear equations (5)
can be partitioned as follows,[

K + γB 1
1T 0

]
=

[
c11 cT

1

c1 C1

]
= C.

Let [α(−i); b(−i)] represent the parameters of the kernel probit regression model
during the ith iteration of the leave-one-out cross-validation procedure, then in
the first iteration, in which the first training pattern is excluded,[

α(−1)

b(−1)

]
= C−1

1 [η2, . . . , η`, 0]T .

The leave-one-out prediction for the first training pattern is then given by,

ẑ
(−1)
1 = cT

1

[
α(−1)

b(−1)

]
= cT

1 C−1
1 [η2, . . . , η`, 0]T

Considering the last ` equations in the system of linear equations (5), it is clear
that [c1 C1] [α2, . . . , α`, b]T = [η2, . . . , η`, 0]T , and so

ẑ
(−1)
1 = cT

1 C−1
1 [c1 C1]

[
αT , b

]T
= cT

1 C−1
1 c1α1 + c1 [α2, . . . , α`, b]

T
.

Noting, from the first equation in the system of linear equations (5), that η1 =
c11α1 + cT

1 [α2, . . . , α`, b]
T , thus

ẑ
(−1)
1 = η1 − α1

(
c11 − cT

1 C−1
1 c1

)
Finally, via the block matrix inversion lemma,[

c11 cT
1

c1 C1

]−1

=
[

κ−1 −κ−1c1C
−1
1

C−1
1 + κ−1C−1

1 cT
1 c1C

−1
1 −κ−1C−1

1 cT
1

]
,
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where κ = c11 − cT
1 C−1

1 c, and noting that the system of linear equations (5) is
insensitive to permutations of the ordering of the equations and of the unknowns,
we have that,

ẑ
(−i)
i = ηi −

αi

C−1
ii

. (6)

This means that, assuming the system of linear equations (5) is solved via ex-
plicit inversion of C, an approximate leave-one-out cross-validation estimate of
the test cross-entropy can be evaluated using information already available as
a by-product of training the least-squares support vector machine on the en-
tire dataset. This approximation is based on the assumption that the quadratic
approximation of the regularised loss function is unchanged during the leave-
one-out cross-validation procedure (c.f. [13]). The partial derivatives of z

(−i)
i

with respect to the kernel and regularisation parameters are easily obtained.
This provides the basis for an efficient model selection scheme, based on min-
imisation of the approximate leave-one-out cross-validation estimate of the test
cross-entropy, via scaled conjugate gradient descent [15].

3 Results

Table 1 illustrates the generalisation performance of kernel probit regression
algorithms with leave-one-out and conventional k-fold cross-validation based
model selection schemes, over the suite of thirteen benchmark datasets used
in the study by Mika et al. [16]. Results obtained using a range of state-of-the-
art classifiers are also displayed for comparison. The expectation-propagation
based Gaussian Process classifier (e.g. [17]) is of particular interest, as it repre-
sents a classifier with the same basic structure as the KPR model, with similar
design goals. Each benchmark consists of 100 random partitionings (20 in the
case of image and splice) of the data to form the training and test sets for each
trial. Model selection was performed separately in each trial, in order to avoid
any possibility of selection bias. The use of multiple realisations of the data also
allows the use of significance tests, via the z-score. Comparing leave-one-out and
5-fold cross-validation based selection methods for the kernel probit regression
model, neither model is significantly better than the other on any of the thirteen
benchmarks, at the 95% level. The KPR with leave-one-out cross-validation
based model selection is significantly superior to the EP-GPC on four bench-
marks (ringnorm, splice, twonorm and waveform) and statistically inferior on
only two (banana and image). The computational expense of the proposed ap-
proximate leave-one-out cross-validation method is however negligible as it can
be computed as a by-product of the training algorithm.

4 Conclusions

In this paper, we have presented an efficient model selection procedure for kernel
probit regression models, based on a closed-form approximation of the leave-one-
out cross-validation estimate of the test cross-entropy. The partial derivatives
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of this criterion with respect to the hyper-parameters are easily computed, per-
mitting the use of efficient scaled conjugate-gradient optimisation methods. An
extensive evaluation over thirteen benchmark datasets reveals this approach to
be comparable with conventional k-fold cross-validation based methods in terms
of generalisation. Furthermore, the kernel probit regression model is also com-
petitive with the state-of-the-art Gaussian process classifier, based on the ex-
pectation propagation algorithm.
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[16] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, A. J. Smola, and K.-R. Müller. Invariant
feature extraction and classification in feature spaces. In S. A. Solla, T. K. Leen, and
K.-R. Müller, editors, Advances in Neural Information Processing Systems, volume 12,
pages 526–532. MIT Press, 2000.

[17] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
Adaptive Computation and Machine Learning. MIT Press, 2006.

222

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.


