
Reinforcement Learning in a Nutshell

V. Heidrich-Meisner1, M. Lauer2, C. Igel1 and M. Riedmiller2

1- Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany

2- Neuroinformatics Group, University of Osnabrück, Germany

Abstract. We provide a concise introduction to basic approaches to

reinforcement learning from the machine learning perspective. The focus

is on value function and policy gradient methods. Some selected recent

trends are highlighted.

1 Introduction

Reinforcement learning (RL, [1, 2]) subsumes biological and technical concepts
for solving an abstract class of problems that can be described as follows: An
agent (e.g., an animal, a robot, or just a computer program) living in an en-
vironment is supposed to find an optimal behavioral strategy while perceiving
only limited feedback from the environment. The agent receives (not necessarily
complete) information on the current state of the environment, can take actions,
which may change the state of the environment, and receives reward or punish-
ment signals, which reflect how appropriate the agent’s behavior has been in the
past. This reward signal may be sparse, delayed, and noisy. The goal of RL is
to find a policy that maximizes the long-term reward. Compared to supervised
learning, where training data provide information about the correct behavior in
particular situations, the RL problem is more general and thus more difficult,
since learning has to be based on considerably less knowledge.

Reinforcement learning is rooted in the neuronal and behavioral sciences,
and recent results in computational neuroscience try to bridge the gap between
formal RL algorithms and biological substrate (e.g., see [3, 4] and references
therein). However, due to space restrictions we focus on technical RL in the
following. In the next section, we summarize the basic mathematical concepts.
In section 3 we describe solution methods for RL problems, with an emphasis
on value function and policy gradient algorithms. Finally we present selected
extensions and trends in RL.

2 Basic concepts

The formal description of basic RL problems are Markov decision processes
(MDPs), and most solution methods are rooted in Bellman’s optimality equa-
tion. In the following, we introduce these concepts.

2.1 Markov decision process

Markov decision processes model time-discrete stochastic state-transition au-
tomata. An MDP = (S,A,P ,R) consist of a set of states S, a set of actions A,

277

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

the expected (immediate) rewards Ra
s,s′ received at the transition from state s

to state s′ by executing action a, and transition probabilities P . The probability
that in state s action a takes the agent to state s′ is given by Pa

s,s′ . At every
point in time t (we presume discrete time, for RL in continuous time see, e.g.,
[5]), the MDP is in some state st. An agent chooses an action at ∈ A which
causes a transition from state st to some successor state st+1 with probability
Pat

st,st+1
. The agent receives a scalar reward (or punishment) rt+1 ∈ R for choos-

ing action at in state st. The Markov property requires that the probabilities of
arriving in a state st+1 and receiving a reward rt+1 only depend on the state st

and the action at. They are independent of previous states, actions, and rewards
(i.e., independent of st′ , at′ , rt′+1 for t′ < t). This restriction can be relaxed,
see section 4.

The agent that interacts with the MDP is modeled in terms of a policy. A
deterministic policy π : S → A is a mapping from the set of states to the set
of actions. Applying π means always selecting action π(s) in state s. This is a
special case of a stochastic policy, which specifies a probability distribution over
A for each state s, where π(s, a) denotes the probability to choose action a in
state s.

2.2 Bellman equation

The goal of RL at some time t = 0 is to find a policy that maximizes the
accumulated sum of rewards over time Rt =

∑∞

t=0
γtrt+1, where γ ∈ [0, 1] is

called the discount factor and determines how strongly immediate rewards are
weighted compared to rewards in the future. A discount factor γ < 1 guarantees
that the future discounted return Rt is always a finite number if the immediate
reward is bounded. Since the state transition process is random the actually
observed accumulated (discounted) reward

∑∞

t=0
γtrt+1 might be different from

the expected return E[Rt|π, s0] that the agent gets on average applying policy
π starting from some initial state s0. The return has the recursive property
∑∞

t=0
γtrt+1 = r0 + γ

∑∞

t=1
γtrt+1. Its expectation conditioned on the current

state s and the policy π is called the value V π of state s:

V π(s) = E

[

∞
∑

t=0

γtrt+1|π, s0 = s,

]

=
∑

a∈A

π(s, a)
∑

s′∈S

Pa
s,s′ (Ra

ss′ + γV π(s′)) (1)

This fixed point equation for V π is known as Bellman equation. In addition to
this definition of value functions by infinite sums of expected future rewards, it
is also possible to define value functions based on the average future reward or
on finite sums of future rewards (see, e.g., [1] for details).

The value functions induce a partial order on the set of policies, namely
π1 ≥ π2 if V π1(s) ≥ V π2(s) for all states s ∈ S. Since we are interested in
learning a policy that accumulates as much reward as possible we are interested
in finding a policy π∗ that outperforms all other policies (i.e., π∗ ≥ π for all
policies π). It has been shown that such an optimal policy always exists although

278

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

it need not be unique. All optimal policies of an MDP share the same value
function V ∗ and include at least one deterministic policy.

3 Learning optimal policies

Reinforcement learning algorithms can be broadly classified into critic-only,
actor-only, and actor-critic methods. Each class can be further divided into
model-based and model-free algorithms, depending on whether the algorithm
needs or learns explicitly transition probabilities and expected rewards for state-
action pairs.

3.1 Critic-only: Learning based on value functions

Some of the most important learning algorithms in RL are critic-only methods,
which are based on the idea to first find the optimal value function and then to
derive an optimal policy from this value function. A selection of these approaches
is described in the following.

Dynamic programming For a finite state space, the Bellman equation yields a
finite set of |S| linear equations, which can be solved using standard methods.
A more general and often more practical way is to solve these equations (up
to certain accuracy) using dynamic programming. The right hand side of the
Bellman equation (1) can be interpreted as a mathematical operator T π that
maps a value function to another value function. Thus V π can be seen as the
only fixed point of a contraction mapping T π. Due to Banach’s fixed point
theorem we can find V π by iteratively applying operator T π to some initial
value function V . This observation yields the basic idea to determine V π by
starting with an arbitrary value function V and repeatedly apply T π to it.

If we are interested in finding the optimal value function V ∗, we can modify
the Bellman equation (1) by writing

V ∗(s) = max
a∈A

(

∑

s′∈S

Pa
s,s′ (Ra

ss′ + γV ∗(s′))

)

. (2)

Similar to (1) this equation can be seen as a fixed point equation for some op-
erator T ∗ on V ∗ defined by the right hand side of (2). Again, it can be shown
that T ∗ is a contraction mapping [1]. Hence, V ∗ is unique and it can be ap-
proximated applying the operator T ∗ repeatedly on some arbitrary initial value
function. Once having found V ∗ we can derive an optimal (deterministic) policy
π∗ evaluating V ∗ and always choosing the action which leads to the successor
state with the highest value π∗(s) = arg maxa∈A(

∑

s′∈S
(Ra

ss′ + γPa
s,s′V ∗(s′))).

On the basis of these theoretical findings we can define a learning algorithm
called value iteration, which determines the optimal value function by applying
T ∗ repeatedly and builds an optimal policy using the previous equation. Figure
1 shows the optimal value function of a very simple MDP with 16 states. The

279

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

G 10

9

98.1

8.1

7.3

7.3

7.3

6.6

5.9

5.9

5.9 6.6

5.3

5.3

5.3

Fig. 1: Example of a simple maze world (left): a robot can move in a world of
16 states choosing actions for going up, down, left, right or stay in the current
state. If it stays in the goal state (G) it will obtain a reward of 1, if it collides
with a wall or tries to leave the grid world, it will get reward −1, and in all other
cases reward 0. The robot starts in an arbitrary state. The figure in the middle
shows the optimal value function V ∗ for this MDP with discount factor γ = 0.9.
The figure on the right shows an optimal policy.

agent can derive an optimal policy by greedily selecting the action that takes
the agent into the neighboring state with maximal expected reward.

Value iteration is a model-based approach, because it makes explicitly use of
a model of the environment, which is given by the transition probabilities P and
the expected rewards R.

Temporal difference learning The main disadvantage of value iteration is the
fact that the transition probabilities P and the expected rewards R must be
known. In practice, the MDP is often unknown and the only way to get infor-
mation about it is by interacting with the environment and observing rewards.
Hence, we need an algorithm that estimates the value function and derives an
optimal policy from a set of observable quantities: transitions from state s to
state s′ with action a and immediate reward r that was received. As a typical
representative of model-free learning algorithms we consider Q-learning [6]. It
learns an optimal policy by iteratively building an optimal value function. Defin-
ing a policy on top of a state value function V requires still some knowledge of
the underlying process, since for all states s the possible successor states s′ must
be known. This is not necessary if we estimate the Q-function. For a fixed policy
π, the Q-function models the expected accumulated reward if we play action a
in state s and follow π afterwards:

Qπ(s, a) =
∑

s′∈S

Pa
s,s′ (Ra

ss′ + γV π(s′)) (3)

Denoting with Q∗ the Q-function of an optimal policy and comparing (3) and
(2) we immediately get V ∗(s) = maxa∈A Q∗(s, a) and

Q∗(s, a) =
∑

s′∈S

Pa
s,s′

(

Ra
ss′ + max

a′∈A
Q∗(s′, a′)

)

. (4)

In the model-free setting, P and R are unknown so that we cannot use a
value iteration like algorithm to find Q∗. Instead, we observe transitions of the

280

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

MDP represented by sets of quadruples (s, a, r, s′) and approximate the optimal
Q-function using a stochastic approximation approach [6]. From this idea, the
Q-learning algorithm has been derived.

Q-learning iteratively builds a sequence of Q-functions. After observing a
transition of the form (st, at, rt+1, st+1) it performs an update of the Q-function
at the observed state-action pair (st, at):

Q(st, at)← Q(st, at) + α
(

rt+1 + γ max
a′∈A

Q(st+1, a
′)−Q(st, at)

)

(5)

Here α ≥ 0 is a learning rate that is decreasing over time. This rule can also be
interpreted as stochastic gradient descent with rt+1 + γ maxa′∈A Q(st+1, a

′) −
Q(st, at) being the derivative of the Bellman error that measures the discrepancy
between the left-hand side and right-hand side of (4). In the limit of an infinite
set of observed transitions, convergence can be guaranteed if all state-action pairs
occur infinitely often and some constraints on the decrease of the learning rate
α over time are fulfilled (see, e.g., [1]). Once having calculated Q∗ an optimal
policy can be derived greedily by selecting the action a in state s that maximizes
Q∗(s, a).

Eligibility traces Although Q-learning and related approaches converge towards
the optimal value function, the rate of convergence is low. One reason for this
shortcoming is the fact that only a single state-action pair is updated per time
step. To speed up learning the idea of eligibility traces has been introduced: the
value function is not only updated for the previous state but also for the states
which occurred earlier in the trajectory. Several learning algorithms have been
developed on the basis of eligibility traces such as Q(λ), SARSA(λ), and TD(λ),
see [2] for an overview. We will focus on TD(λ) [7] in this paper.

TD(λ) is an algorithm to calculate the value function V π for a given pol-
icy π. As in Q-learning, V π is learned iteratively from observed trajectories
s0, a0, r1, s1, a1, r2, s2, a2, r3, . . . of the state-transition system. In every step,
the current error δt is calculated as rt+1 + γV (st+1) − V (st), which can be
interpreted as the temporal difference in the estimates of V π concerning sub-
sequent states. The goal of learning is to minimize these temporal difference
errors. Algorithms based on this idea are therefore called temporal difference
(TD) methods.

Instead of updating only V (st) the value function is updated for all states.
How strongly the current experience affects some state s depends on the time
which has passed since s has occurred within the observed trajectory. This
dependence is described in terms of an eligibility function e(s). The update rule
at a point in time t is

e(s)←

{

γλe(s) + 1 if s = st

γλe(s) if s 6= st

and V (s)← V (s) + αe(s)δt (6)

for all states s ∈ S. The parameter λ ∈ [0, 1] controls the rate at which the
influence of an error decreases exponentially with the time difference between a

281

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

past state and the current state. In the case λ = 0 the value function is updated
only for the current state st. It has been shown that the TD(λ) algorithm
converges towards V π with probability 1 if all states occur infinitely often (e.g.,
see[8]).

Approximate reinforcement learning The algorithms described above are based
on calculating fixed points of value functions (V or Q). We assumed that we
somehow can represent the value function in an appropriate way, e.g., by storing
it in a table. However, in practice state spaces might become very large or even
infinite so that a table based representation is not possible. Furthermore, filling
these large tables would require a huge amount of observed transitions.

To overcome this problem, value functions are typically represented in terms
of parametrized function approximators, e.g., linear functions, multi-layer per-
ceptrons or grid based function approximators. Instead of updating individual
entries of the value functions, the parameters of the function approximator are
changed using gradient descent to minimize the Bellman error (e.g.,

∑

t δ2
t , see

[9]).
The convergence of these approaches cannot be guaranteed in general, only

for linear approximators convergence has been proven under very restrictive
conditions [10]. It can be shown that even small deviations from these conditions
might lead to divergence [11].

For the case of a linear function approximators, learning a value function
turns out to become a linear problem. Hence, instead of using gradient descent
to minimize the Bellman error analytical solutions can be calculated [12, 13].

Building a world model So far experience of the agent implied interactions with
its environment. But if the agent possesses an internal model of the environment,
it can use this world model to create simulated experience and then learn from
this second source of experience. The agent does not need to have knowledge
about the MDP initially, but can estimate the model from its interaction with
the environment. Thereby, model-based RL techniques can be applied with-
out knowing P and R a priori. For example, Sutton’s Dyna-Q [14] performs
Q-learning using real and simulated experiences, where the real experience is
simultaneously used to update the world model.

3.2 Actor-only: Direct policy search

Value function methods like TD-learning use an indirect approach, in the sense
that instead of directly searching for an optimal policy, an optimal value function
is learned before a policy is defined on top of it. In contrast, actor-only methods
search directly in policy space. This is only possible if the search space is re-
stricted. Typically a class of policies is parametrized by a real-valued parameter
vector θ. The definition of this class allows to integrate prior knowledge about
the task and thus reduce the search complexity. This can also be a drawback if
the task is not known well enough to choose an appropriate subclass of policies.

282

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

A c t o rC r i t i cE n v i r o n m e n t
a c t i o ns t a t er e w a r d e r r o rm e a s u r e

Fig. 2: General actor-critic architec-
ture: Policy (actor) and value functions
(critic) are represented and improved
separately. The critic measures the per-
formance of the actor and decides when
the actor should be improved. This ar-
chitecture offers the possibility to com-
bine a value function approach (as the
critic) with a policy gradient approach
(as the actor).

An example for an actor-only method is William’s REINFORCE algorithm [15]
for immediate rewards, which is a special case of a policy gradient method, see
section 3.3.

Evolutionary algorithms Evolutionary algorithms are randomized direct search
algorithms inspired by concepts of neo-Darwinian evolution theory. Evolutionary
methods can easily be adopted to solve RL tasks and turned out to be very robust
in practice. Usually they are used to search directly in the space of policies [16].
The recent success of evolved NNs in game playing (e.g., [17, 18]) demonstrates
the potential of evolutionary RL.

3.3 Actor-critic methods

Until now two types of algorithms have been introduced: Actor-only methods
modifying policies directly and critic-only algorithms are based on evaluating
value functions. Both approaches can be combined to actor-critic architectures,
where the actor and critic are both represented explicitly and learned separately,
see Fig. 2. The critic monitors the agents performance and determines when the
policy should be changed. The actor-critic concept was originally introduced by
Witten [19] and then by Barto, Sutton and Anderson [20], who coined the terms
actor and critic. It has been particularly successful in neuronal RL. A detailed
study of actor-critic algorithms is given in [21].

Policy gradient reinforcement learning Policy gradient strategies assume a dif-
ferentiable structure on a predefined class of stochastic policies and ascent the
gradient of a performance measure. The performance ρ(π) of the current policy
can be for example defined as ρ(π) =

∑

s,s′∈S,a∈A
dπ(s)π(s, a)Pa

s,s′Ra
s,s′ , where

dπ(s) = limt→∞ Pr{st = s | s0, π} is the stationary state distribution, which we
assume to exist. The performance gradient ∇θρ(π) with respect to the policy
parameters θ is estimated from interaction with the environment and the pa-
rameters θ are adapted by gradient ascent along ∇θρ(π). The policy gradient
theorem (which is a result of a parametrized form of the Bellman equation) en-
sures that the performance gradient can be determined from unbiased estimates

283

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

of Q and dπ. For any MDP we have

∇θρ =
∑

s∈S

dπ(s)
∑

a∈A

∇θπ(s, a)Qπ(s, a) . (7)

This formulation still contains explicitly the unknown value function Qπ(s, a),
which has to be estimated. It can be replaced by a function approximator fw :
S×A→ R (the critic) with real-valued parameter vector w satisfying the conver-
gence condition

∑

s∈S
dπ(s)

∑

a∈A
π(s, a)(Qπ(s, a) − fw(s, a))∇wfw(s, a) = 0.

This leads directly to the extension of the policy gradient theorem for function
approximation [22]. If fw satisfies the convergence condition and is compatible
with the policy parametrization in the sense that∇wfw(s, a) = ∇θπ(s, a)/π(s, a)
(i.e., fw is linear in the corresponding features) then

∇θρ(π) =
∑

s∈S

dπ(s)
∑

a∈A

∇θπ(s, a)fw(s, a) . (8)

Different policy gradient methods [22, 21, 23] vary in the way the performance
gradient is estimated and the value function is approximated. Cao provides an
unified view of these methods based on perturbation analysis [24].

Stochastic policies π with parameter θ are parametrized probability distri-
butions. In the space of probability distributions, the Fisher information matrix
F (θ) induces an appropriate metric suggesting “natural” gradient ascent in the
direction of ∇̃θρ(π) = F (θ)−1∇θρ(π). Using the definitions above, we have
F (θ) =

∑

s∈S
dπ(s)

∑

a∈A
πθ(s, a)∇θ ln(π(s, a))(∇θ ln(π(s, a)))T . This implies

∇θρ = F (θ)w, which leads to the most interesting identity ∇̃θρ(π) = w. Bag-
nell [25] builds an algorithm directly for the metric, while Peters et al. [26]
integrate the natural gradient in an efficient actor-critic architecture.

3.4 Practical problems in reinforcement learning

Reinforcement learning algorithms have to deal with several inherent challenges,
for example the temporal credit assignment problem, the exploration-exploitation
dilemma, and the curse of dimensionality.

The reward the agent receives is not necessarily correlated to the last action
the agent has performed, but can be delayed in time. The problem of mapping
the reward only to those choices that led to it is called the temporal credit
assignment problem.

In order to learn structure and features of an unknown environment, the
agent needs to explore the state-action space. In the RL context, exploring
means choosing actions that are regarded as suboptimal given the current state
of knowledge. While exploration is necessary in the initial learning phase, it
may become less relevant with increasing knowledge the agent has gathered by
trial-and-error and that can be exploited for decision making. The E3 algorithm
and some Bayesian RL methods directly address the exploration-exploitation
dilemma (see section 4).

284

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

The next problem is known as the curse of dimensionality. To ensure con-
vergence a typical RL method needs to visit each state-action pair sufficiently
often. Even comparatively simple toy problems can have huge state spaces that
have to be explored. In many RL problems continuous state or action spaces are
the appropriate description. Thus, testing all state-action pairs often becomes
impractical. The agent has to generalize, that is, to learn from his experience
about state-action pairs he never tried. Generalization can be achieved using
function approximators, where gluing together neighboring states (e.g., through
discretization) can be viewed as the most simple example. If a state is described
by a vector of features, even for discrete representations the state space grows
exponentially with the number of features. Achieving appropriate generalization
requires a priori knowledge about the RL problem—and wrong generalization
can severely harm the learning process.

4 Extensions and recent developments

In the following, we present selected extensions of the MDP formalism and recent
trends in theory and practice of RL.

Partially observable Markov decision processes (POMDP) In a POMDP the
agent does not necessarily receive full information about the state the system
is in, but different states with different possibilities may look the same for the
agent. A POMDP(S, y,Y,A,P ,R) contains additionally a set of observations
Y and a function y that maps every state to an observation, which is provided
to the agent instead of the true state information. Hence, the Markov property
is violated from the agent’s point of view.

It has been proven that finding an optimal policy in POMDPs is an NP-
hard problem [27]. Learning algorithms based on value functions exist [28] but
can only be applied to very small problems in practice. In order to distinguish
between different states the agent perceives as identical it creates an internal
model of what he believes to be the true state.

Stochastic games An important generalization of MDPs are stochastic games
(or multi-agent MDPs) in which a team of agents interacts. Every agent may
have its individual reward function, and optimality of a policy can only be in-
terpreted as an optimal response to the behavior of the other agents. From the
perspective of a single agent, the environment loses the property of being Marko-
vian. Problems which occur in multi-agent environments are how to define the
expected accumulated reward of an agent and how to coordinate all agents.

Some key ideas in multi-agent RL are drawn from game theory. For two agent
games where both players have completely adversarial reward functions (zero-
sum games), a learning algorithm similar to Q-learning has been proposed [29].
This concept has been generalized in [30]. Although the idea of Nash equilibria
has brought some insights into multi-agent learning, the resulting approaches are

285

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

limited in practice to the cases of completely adversary or completely cooperative
games [31].

Hierarchies Hierarchical models can be used to decompose RL problems. An
overview is given in [32]. Several approaches have been developed, for example
the concept of multi-step actions called options [33]. Options can either be
normal actions or sequences of actions, where the latter solve particular subtasks.
Using options, the MDP becomes a so-called semi-MDP. Semi-MDPs are also
considered in the MAXQ approach [34], which decomposes the given MDP into
a hierarchy of semi-MDPs whose solutions can be learned simultaneously. As
a third representative of hierarchical RL, the HAM approach [35] restricts the
choice of actions to a set of abstract machines which solve subtasks.

Bayesian reinforcement learning and kernels methods Bayesian and kernel meth-
ods have been very successful in a broad range of different fields in machine
learning. A Bayesian approach to RL introduces a prior on a value function
or a model (see [36, 37]). Experience is then used to compute a posterior over
the value function or model, which captures all the knowledge the agent can
have about the environment. On this basis, decisions that optimize future ex-
pected return yield theoretically an optimal trade-off between exploration and
exploitation (see section 3.4).

Several kernel based methods have recently been developed in the context
of RL (e.g., see [38]). These approaches use kernel methods as approximators
for value functions or the unknown MDP and combine them with classical ap-
proaches such as dynamic programing.

E3 (Explicit Explore or Exploit) algorithm The E3 algorithm developed by
Kaerns and Singh [39] uses an internal partial model of the underlying MDP,
the known-state MDP. If Sknown is the set of currently known states, the known-
state MDP is the same as the full MDP for all states in Sknown, but all transitions
to states that are not elements of Sknown are redirected to a single additional
absorbing state. An optimal policy can either achieve its high performance by
staying with high probability in Sknown (exploitation case), or it leaves Sknown

with a significant probability (exploration case). The algorithm computes (off-
line) an optimal exploitation and an optimal exploration policy, follows the ex-
ploitation policy if it achieves a predefined performance threshold, and follows
the exploration policy otherwise. For a fixed number of steps, the E3 algorithm
achieves efficiently near-optimal return [39].

5 Conclusion

Reinforcement learning extends the domain of machine learning to a broad area
of control and decision problems that cannot be tackled with supervised or un-
supervised learning techniques. A couple of real-world applications have been
successfully realized using RL, for example Tesauro’s Backgammon player [40]

286

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

or applications to humanoid robot control (e.g., [26]) and helicopter control [41].
Some fundamental theoretical and practical problems still have to be solved in
the domain of RL. However, promising recent developments have already led to
considerably improved learning algorithms and new theoretical insights.

References

[1] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
1996.

[2] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

[3] S. Tanaka, K. Doya, G. Okada, K. Ueda, Y. Okamoto, and S. Yamawaki. Prediction of
immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature

Neuroscience, 7(8):887–893, 2004.

[4] Y. Niv, M.O. Duff, and P. Dayan. Dopamine, uncertainty and TD learning. Behavioral

and Brain Functions, 1(6), 2005.

[5] K. Doya. Reinforcement learning in continuous time and space. Neural Computation,
12:243–269, 2000.

[6] C.J.C.H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3–4):279–292, 1992.

[7] R.S. Sutton. Learning to predict by the methods of temporal differences. Machine Learn-

ing, 3(1):9–44, 1988.

[8] P. Dayan and T.J. Sejnowski. TD(λ) converges with probability 1. Machine Learning,
14(1):295–301, 1994.

[9] L.C. Baird. Residual algorithms: Reinforcement learning with function approximation.
In Proc. 12th Int’l Conf. on Machine Learning, pages 30–37, 1995.

[10] J.N. Tsitsiklis and B. Van Roy. Analysis of temporal-diffference learning with function
approximation. In Advances in Neural Information Processing Systems, volume 9, pages
1075–1081, 1997.

[11] A. Merke and R. Schoknecht. A necessary condition of convergence for reinforcement
learning with function approximation. In Proc. 19th Int’l Conf. on Machine Learning,
pages 411–418, 2002.

[12] S.J. Bradtke and A.G. Barto. Linear least-squares algorithms for temporal difference
learning. Machine Learning, 22(1–3):33–57, 1996.

[13] J.A. Boyan. Technical update: Least-squares temporal difference learning. Machine

Learning, 49(2):233–246, 2002.

[14] R.S. Sutton. Integrated architectures for learning, planning, and reacting based on ap-
proximating dynamic programming. In Proc. 17th Int’l Conf. on Machine Learning,
pages 216–224, 1990.

[15] R.J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3):229–256, 1992.

[16] D.E. Moriarty, A.C. Schultz, and J.J. Grefenstette. Evolutionary Algorithms for Rein-
forcement Learning. Journal of Artificial Intelligence Research, 11:199–229, 1999.

[17] K. Chellapilla and D.B. Fogel. Evolution, neural networks, games, and intelligence. Pro-

ceedings of the IEEE, 87(9):1471–1496, 1999.

[18] S.M. Lucas and G. Kendall. Evolutionary computation and games. IEEE Computational

Intelligence Magazine, 1(1):10–18, 2006.

[19] I.H. Witten. An adaptive optimal controller for discrete-time markov environments. In-

formation and Control, 34(4):286–295, 1977.

287

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

[20] A.G. Barto, R.S. Sutton, and C.W. Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Transactions on Systems, Man and Cybernetics,
13:834–846, 1983.

[21] V.R. Konda and J.N. Tsitsiklis. On Actor-Critic Algorithms. SIAM Journal on Control

and Optimization, 42(4):1143–1166, 2006.

[22] R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Advances in Neural Information

Processing Systems, volume 12, pages 1057–1063, 2000.

[23] J. Baxter and P.L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Arti-

ficial Intelligence Research, 15(4):319–350, 2001.

[24] X.R. Cao. A basic formula for online policy gradient algorithms. IEEE Transactions on

Automatic Control, 50(5):696–699, 2005.

[25] J. Bagnell and J. Schneider. Covariant policy search. In Proc. 18th Int’l Joint Conf. on

Artificial Intelligence, pages 1019–1024, 2003.

[26] J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement learning for humanoid robotics.
In Proc. 3rd IEEE-RAS Int’l Conf. on Humanoid Robots, pages 29–30, 2003.

[27] M.L. Littman. Memoryless policies: Theoretical limitations and practical results. In
From Animals to Animats 3: Proc. 3rd Int’l Conf. on Simulation of Adaptive Behavior,
Cambridge, MA, 1994.

[28] A.R. Cassandra, L.P. Kaelbling, and M.L. Littman. Acting optimally in partially observ-
able stochastic domains. In Proc. 12th National Conf. on Artificial Intelligence, pages
1023–1028, 1994.

[29] M.L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Proc. 11th Int’l Conf. on Machine Learning, pages 157–163, 1994.

[30] J. Hu and M.P. Wellman. Multiagent reinforcement learning: theoretical framework and
an algorithm. In Proc. 15th Int’l Conf. on Machine Learning, pages 242–250, 1998.

[31] M.L. Littman. Friend-or-foe Q-learning in general-sum games. In Proc. 18th Int’l Conf. on

Machine Learning, pages 322–328, 2001.

[32] A.G. Barto and S. Mahadevan. Recent Advances in Hierarchical Reinforcement Learning.
Discrete Event Dynamic Systems, 13(4):341–379, 2003.

[33] R.S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181–211,
1999.

[34] T.G. Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value Function
Decomposition. Journal of Artificial Intelligence Research, 13:227–303, 2000.

[35] R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. In Advances

in Neural Information Processing Systems, volume 10, pages 1043–1049, 1998.

[36] T. Wang, D. Lizotte, M. Bowling, and D. Schuurmans. Bayesian sparse sampling for on-
line reward optimization. In Proc. 22nd Int’l Conf. on Machine Learning, pages 956–963,
2005.

[37] P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analytic solution to discrete Bayesian
reinforcement learning. In Proc. 23rd Int’l Conf. on Machine Learning, pages 697–704,
2006.

[38] Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with Gaussian processes. In
Proc. 22nd Int’l Conf. on Machine learning, pages 201–208. ACM Press New York, NY,
USA, 2005.

[39] M. Kearns and S. Singh. Near-Optimal Reinforcement Learning in Polynomial Time.
Machine Learning, 49(2):209–232, 2002.

[40] G. Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level
play. Neural Computation, 6(2):215–219, 1994.

[41] J. Bagnell and J. Schneider. Autonomous Helicopter Control using Reinforcement Learn-
ing Policy Search Methods. In Proc. Int’l Conf. on Robotics and Automation, 2001.

288

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.

