
Tracking fast changing non-stationary
distributions with a topologically adaptive

neural network: Application to video tracking

Georges Adrian Drumea and Hervé Frezza-Buet

Supélec - Information, Multimodality & Signal Team
2, rue Edouard Belin, F-57070 Metz - France

Abstract. In this paper, an original method named GNG-T, extended
from GNG-U algorithm by [1] is presented. The method performs contin-
uously vector quantization over a distribution that changes over time. It
deals with both sudden changes and continuous ones, and is thus suited for
video tracking framework, where continuous tracking is required as well as
fast adaptation to incoming and outgoing people. The central mechanism
relies on the management of quantization resolution, that cope with stop-
ping condition problems of usual Growing Neural Gas inspired methods.
Application to video tracking is briefly presented.

1 Introduction

In the context of video processing, and more precisely concerning the detection
of elements of interest, designers often built integrated algorithms by combining
a filtering process with a clustering procedure. For example, detecting moving
people can be done in such a framework by using motion detection filters on the
images, labeling some pixels as belonging to moving parts of the image. This is
used for traffic analysis for example [2], where patches of moving salient points
are build from the image flow. Background subtraction is also used [3] to detect
objects of interest, moving or not, dealing with shadows and reflections. Such
preliminary stages are also motivated by content based features of ISO/MPEG-4
[4]. The difficulty is then to relate the detected pixels to the different objects
in the scene. This latter stage requires clustering the pixels so that each cluster
contains pixels related to each respective object.

Let us consider one image in the video stream, where object related pixels
have been identified. They form several clusters, one for each object. The
contours of the clusters can be extracted, and they can be reduced to polygons,
as shown on fig. 1. Vertexes and edges of the polygons form a graph that is
suitable for further interpretation of the scene (number of connected components
could be related to the number of objects, the curvatures of the polygons could
help to make a difference between a walking human and a walking dog, etc.).
The motion detection process that feeds the system isn’t described in the paper,
and neither is the use of the graph. Concerning both of these points, let us only
stress here the hypothesis that obtaining such graphs from a reliable procedure
could be useful to bridge the gap between numerical analysis in the one hand,
based on filtering results over the image, and symbolic scene interpretation in
the other hand, based on graph analysis to extract semantics.

43

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



Fig. 1: Schematic description of the extraction of a graph to describe moving
objects in a video scene. From left to right: input, motion detection result,
expected kind of graph built from moving pixel clustering, result on real exper-
iments with GNG-T.

What is rather presented here is focused on the clustering stage of the pro-
cess. It has been previously introduced by an example involving a single image,
but it has to run on the video stream, from one image to the next. As the
stream feeds the algorithm with successive frames, the distribution of detected
pixels in each frames changes, and it forms a non-stationary distribution. This
non stationary feature has two distinct origins. First, moving people produce
continuously sliding blobs of pixels where motion is detected. An update of the
graph connected component related to a walking person is expected in that case,
rather than a rebuild of the whole graph from scratch. This smooth update is
the actual tracking. Second, when people enter or leave the scene, some blobs
need to be added or removed. This requires fast adaptation to deal with changes
in the number of people in the scene. These latter changes are more sudden ones,
but they have to be handled while keeping on tracking smoothly moving people
that are still in the scene. Dealing with these two requirements when analyzing
a non stationary distribution is the central motivation for the method proposed
here, and the scope of that work is more general than actual video tracking. The
purpose of our method is to track distributions that have both fast changing and
smooth changing components.

2 Clustering with growing networks

In order to set up the basis for the presentation of our algorithm, let us recall
some aspects of vector quantization and define some notations. Let ξ ∈ X a
sample of an unknown distribution PX over space X, according to a stationary
density of probability p(ξ). Vector quantization consists classically in finding
a discrete set {wi}1≤i≤n ⊂ X of prototypes such as this set “matches” PX .
Let w(ξ) be argminwi

{d(ξ, wi)}, where d is some proximity function (usually
d(ξ, wi) = ‖ξ − wi‖2), less restrictive than pure distances, returning low val-
ues for similar arguments and higher values for less similar arguments. The

44

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



quality of the fitting depends on how well the prototypes {wi} are scattered
over the distribution. More formally, this scattering is to minimize distortion
E =

∫
X

d(w(ξ), ξ)p(ξ)dξ. The minimization of E is performed by successive
stages, until some stopping condition is met. At each stage, an input ξ is first
tossed, according to PX . Second, a so called winner-take-all procedure (WTA)
allows to determine the winning prototype wi1 = w(ξ). Third, wi1 is modified
so as to be closer to ξ.

These three stages are common to most vector quantization techniques, and
we will only consider here refinements proposed by Fritzke [5]. The idea consists
in accumulating error d(wi1 , ξ) at each wi1 , and periodically add new vector
w near the wi that has accumulated most error. Moreover, the wis are linked
together to retrieve the topology of PX , and modification of wi1 implies also a
smaller modification of the wjs connected to wi1 . We refer to [5] for exhaustive
description of the Growing Neural Gas algorithm (GNG).

As opposed to Self-Organizing Maps (SOM) by Kohonen [6] and k-means,
where decaying learning rates are used, the GNG algorithm is stationary and
deals with constant learning rates. One advantage of this feature is that the
algorithm can adapt to changes in the distribution PX . More precisely, the
distribution can be non stationary, noted PX(t), and the GNG can update the
wi so that they follow PX(t), then forgetting ancient obsolete distributions. This
can lead to unused wis that are never updated anymore, and some supplementary
mechanism has to be added to avoid this problem. This has been done in the
past by Fritzke [7, 1], where the number of wis is kept constant, and where the
wis are added an utility measure that decays for a prototype wi if it is left out
the distribution due to fast changes. GNG with such a utility-based mechanism
is called GNG-U.

A problem with GNG-U and GNG is that the size of the network is limited
by a parameter. For some distributions, the number of prototypes cannot be
estimated beforehand. Moreover, the appropriate number may change over time.
In our video tracking framework, when new moving objects are added in the
scene, more prototypes are needed to keep the same accuracy of the vector
quantization (i.e. to keep distortion small), and some prototypes have to be
removed if some object leaves the scene (to avoid over quantization). The method
that is proposed here is driven by keeping constant the accuracy of the vector
quantization, leading to the adding or the removing of prototypes to do so when
the distribution changes. This constant is targeted by the vector quantization,
and we call the method GNG with targeting (GNG-T).

3 The GNG-T algorithm

Instead of dealing with decays and error accumulation, GNG-T estimates the
expected quantization error from samples. This supposes the use of a time win-
dow for sampling, which is the drawback of the methods regards to GNG-U that
avoids sampling windows by the actual use of decaying values and accumulators.
Moreover, the estimations are made considering the prototypes constant, which

45

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



is an approximation since they update continuously when they win the WTA
stage. When a prototype wi wins for an example ξ (i.e ξ ∈ Vi, the Voronöı cell
around wi) the quantization error d(wi, ξ) is sampled for updating its mean. This
estimates quantity Ēi given by equation 1, sampled only for winning prototypes.

Ēi =
∫

Vi

d(ξ, wi)p(ξ/ξ ∈ Vi)dξ =
(∫

Vi

d(ξ, wi)p(ξ)dξ

)
/

(∫
Vi

p(ξ)dξ

)
(1)

This leads immediately to equation 2, where expression on the right is the actual
contribution of the Voronöı cell Vi to the overall distortion.

Ēi

∫
Vi

p(ξ)dξ = T̄i =
∫

Vi

d(ξ, wi)p(ξ)dξ (2)

So, during a sampling window of N successive inputs to the algorithm, if we
note

{
ξi
j

}
1≤j≤ni

the ni examples for which wi has won, we can estimate the
right hand of equation 2, noted T̄i, has in equation 3.

Ēi ≈ 1
ni

ni∑
j=1

d(ξi
j , wi) and

∫
Vi

p(ξ)dξ ≈ ni/N ⇒ T̄i ≈ 1
N

ni∑
j=1

d(ξi
j , wi) (3)

After stabilization (i.e. distortion is minimal), if number of prototypes is kept
constant, a vector quantization process leads to values T̄i for each wi that are
similar. If values are too small, when compared with the desired T target, some
prototype have to be removed, and the one with minimal accumulated error
is chosen. On the contrary, if values are bigger than T , more prototypes are
needed, and we add them exactly as GNG does.

Last point with our algorithm is the learning rule. As the method is dedi-
cated to non stationary distributions, where noise stands and where new clusters
may suddenly appear, it is crucial that these effects do not to destroy cur-
rent clustering, since we want smoothly changing clusters to be tracked. The
usual learning rule updates a prototype w (and its neighbors) from example
ξ with Δw = α(ξ − w). The problem with this learning rule is that if some
new cluster (or noise) appears far from the closest available prototype, Δw is
a big change, and current cluster is strongly altered. For this reason, we use
Δw = α(ξ − w)/‖ξ − w‖. The GNG-T algorithm is then the following, where �
denotes steps that are different from original GNG.

Initialization Use 2 prototypes w1 and w2 initialized according to p. Set
sample window size N , target T , learning rates α1 > α2, and maximum
edge age A. n← 0.

Step� 1 n← n + 1, reset ni and Ei to 0 for all prototypes wi.

Step 2 Get input ξ according to p, and determine the winning prototype wi1

and the second closest prototype wi2 , among the wis.

Step� 3 ni1 ← ni1 + 1.

46

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



Step 4 Create (or refresh) an edge between wi1 and wi2 with 0 age. Increment
the age of all the edges from wi1 , and remove the ones older than A.

Step 5 Ei1 ← Ei1 + d(ξ, wi1).

Step� 6 Update weights as follows, index j denoting the neighbors of wi1 .

wi1 ← α1(ξ − wi1)/‖ξ − wi1‖, ∀j wj ← α2(ξ − wj)/‖ξ − wj‖

Step� 7 If n < N , then go to step 1. Else, sampling is done, and reset n to 0
for next one.

Step� 8 Compute Emin = mini:ni>0 {Ei/N} and Emax = maxi:ni>0 {Ei/N}
Step� 9 If T ∈ [Emin, Emax], go to step 12. If T < Emin, go to step 10. If

T > Emax, go to step 11.

Step 10 Determine wa the prototype wi with strongest Ei, and find among its
neighbors wb, the prototype wj with strongest Ej . Remove edge between
them, add prototype w+ = 0.5×(wa +wb), add a new 0 aged edge between
wa and w+, and between wb and w+. Go to step 12.

Step� 11 Remove the prototype i for which Ei = Emin. Go to step 12.

Step� 12 Remove nodes that have not won (sampling windows have to be large
enough). If some global stopping condition is not fulfilled, go to step 1.

Fig. 2: Fast changing distribution. The two leftmost figures show GNG-U be-
havior, and the two rightmost ones shows GNG-T.

4 Experimental results and discussion

We have conducted experiments with real and synthetic data. Tests with real
data have involved processing a video stream from a video platform, performing
basic motion detection and then clustering on the moving pixels. The GNG-T
method has been developed out of the necessity to successfully cluster moving
objects in video images. Applying the GNG-T method exactly as described in
the previous section yields good results with respect to the quality of cluster
coverage. We can see on the right of fig.1 the algorithm correctly identifying
a moving person. To compare the behavior of GNG-T and GNG-U, we have

47

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.



also performed a synthetic test (see fig. 2). The test is set up in the following
way: we have two ring-like clusters in the scene and we also put in some noise.
One of the rings is fixed while the other can be moved freely. We start with
the clusters at an initial position. After a very short time (a couple of sampling
windows), the algorithm covers the two rings uniformly. We then suddenly move
one of the clusters to a different position. The purpose of the test is to see if the
algorithm can recover quickly from this fast change. Moreover, after only a few
iterations, there aren’t any trails left behind with GNG-T. This shows that the
algorithm can follow fast moving clusters. We have also performed some more
tests using synthetic distributions in which we have tested the ability of GNG-T
to follow slowly changing distributions. Since GNG-T inherits its based features
from GNG, it has performed very well in these situations.

GNG-T is based on the original GNG algorithm proposed by Fritzke. It
offers more adaptability at the cost of having the input data split into sample
windows. The windows introduce additional problems because, in order to have
accurate results, large windows are required. In a video processing application,
an alternative to this problem is to process each frame multiple times to provide
enough data for the network to adapt accordingly. Multiple passes over data
can be used with other algorithms, but as GNG-T offers the advantage of not
having to specify a maximum network size, it may be easier to adjust the tar-
get parameter in some applications than fixing the number of prototypes. Last,
let us stress here that the size of the network is managed according to statis-
tical measures, which is more adapted to changing distributions that keeping
the number of neurons constant. This criterion could also be used is traditional
GNG. Ongoing work consists in providing more tests and comparative evalua-
tions, improving motion detection on the video frames, and designing algorithms
that exploit the generated graphs for a semantic interpretation of the scene.

References

[1] B. Fritzke. A self-organizing network that can follow non-stationary distributions. In
ICANN’97: International Conference on Artificial Neural Networks, pages 613–618.
Springer, 1997.

[2] C. Kamath, A. Gezahegne, S. Newsam, and G. M. Roberts. Salient points for tracking mov-
ing objects in video. In Proceedings of Image and Video Communications and Processing,
volume 5685, pages 442–453, 2005.

[3] Rita Cucchiara, Costantino Grana, Massimo Piccardi, and Andrea Prati. Detecting moving
objects, ghosts, and shadows in video streams. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 25(10):1337–1342, 2003.

[4] R. Mech and M. Wollborn. A noise robust method for 2d shape estimation of moving
objects in video sequences considering a moving camera. EURASIP, Signal Processing,
66(2):203–218, 1998.

[5] B. Fritzke. A growing neural gas network learns topologies. In G. Tesauro, D. S. Touretzky,
and T. K. Leen, editors, Advances in Neural Information Processing Systems 7, pages 625–
632. MIT Press, Cambridge MA, 1995.

[6] T. Kohonen. Self-Organizing Maps. Springer, 2001.

[7] B. Fritzke. The LBG-U method for vector quantization – an improvement over LBG
inspired from neural networks. Neural Processing Letters, 5(1):35–45, 1997.

48

ESANN'2007 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 25-27 April 2007, d-side publi., ISBN 2-930307-07-2.


