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Abstract. In this paper the application of reinforcement learning to
Tetris is investigated, particulary the idea of temporal difference learning is
applied to estimate the state value function V . For two predefined reward
functions Tetris agents have been trained by using a ε-greedy policy. In
the numerical experiments it can be observed that the trained agents can
outperform fixed policy agents significantly, e.g. by factor 5 for a complex
reward function.

1 Machine learning for game playing

Playing games, such like Chess, Go, Checkers, Backgammon or Poker, is always
a great intellectual challenge to humans, and therefore game playing is a sce-
nario to test and evaluate artificial intelligence methods, in particular machine
learning aspects have been taken more and more into account during the last
years. Many methods derived from the fields of traditional artificial intelligence
and mathematical game theory have been utilized in computer games, for in-
stance, game trees are one of the most popular tools. A game tree represents
all the possible states of a game in its nodes. Starting point is the root node
representing the starting configuration of the game. Children nodes within the
tree are representing all states that can be reached for the current node follow-
ing the rules of the game, and leaf nodes are representing the terminal states
of the game. In almost all (interesting) games the complete tree is too large
to search all the possible pathes, and therefore the space to be searched must
be reduced by applying heuristics which were tailored by human experts. A
popular attempt in this direction is to estimate the winning chance of the player
by so-called evaluation functions, and learning such evaluation functions utiliz-
ing machine learning techniques became an important challenge of research in
modern artificial intelligence.

Artificial neural networks have been successfully used in many scientific and
real world applications, for instance in pattern recognition, data mining, time
series prediction. In recent years some attempts have been made to train artifi-
cial neural networks for game playing tasks. Tesauro [1] has applied feedforward
neural network models to play Backgammon where the artificial neural net was
used together with reinforcement learning (RL) algorithms. Here in this paper
a RL algorithm which is known as temporal difference learning has been inves-
tigated for playing Tetris. The Tetris board is a grid of 10 columns and 20 rows
of cells, which totals to 200 cells. Every cell can be in two possible states called
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empty and filled. A Tetris gaming piece consists of 4 cells, therefore they are
also known as tetrominos.

A Tetris gaming piece is drawn randomly at the beginning of the game and
placed in the top area of the board. Possible players turns are rotations of
the piece and dropping the piece. In fixed time intervals the piece is moved
automatically down by a row. If it hits prior pieces or the bottom line of the
board, either after some time or by a dropping turn of the player, it stays there
and cannot be moved further. Then the next piece is randomly drawn. As the
player places the pieces on the board, rows will get filled more and more. If
a row is completly filled it is removed from the board and all rows above are
moved one row down. The goal of the game is to avoid hitting the top line of the
board for as long as possible. A detailed description of the game can be found
in [3]. Our implementation, particularly the GUI, is based on [4].

2 Reinforcement Learning

Tetris has been proven to be NP-complete [2]. The consequence of this result
is that it is impossible to find an optimal policy in the policy space effectively,
thus RL methods could be of interest to find approximating solutions. The basic
RL scenario contains two interacting parties: an agent and its environment.
Assuming the enviroment at time t is in a current state (st). In this particular
state the agent can select an action at from a set of possible actions A(st). After
the agent has performed action at the environment sends a reward rt(at, st) to
the agent and executes a state transition st �→ st+1.
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Fig. 1: RL scenario showing the interaction between agent and environment.

The agent’s goal is to maximize the sum of rewards over time. The agent
estimates the values of states it is able to achieve or the values of actions in states
he encounters. These are called state value functions (in the following denoted
by V ) and action value functions respectively. Using this information allows the
agent to choose better actions in respect of solving the task. A comprehensive
guide on reinforcement learing is given in [5].

The greedy action a∗
t is determined by taking the one with a maximum sum
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of reward and value of the following state.

a∗
t := argmax

at∈A(st)
rt + γV (st+1)

here γ ∈ (0, 1) is a discounting factor.
Obviously, only these greedy actions are used for testing. In training, it’s

often useful to explore other states and actions. To allow other actions and
states to be reached, a random action is taken with a rate of ε.

By modelling the reinforcement learning scenario as an Markov decision pro-
cess through Pa

ss′ , namely the propability of changing from state s to s′ under
action a, and Ra

ss′ , the respective reward, one could formulate the relationship
between values of an optimal V -function:

V ∗ (s) = max
a∈A(s)

∑

s′∈S
Pa

ss′ (Ra
ss′ + γV ∗ (s′))

These are called Bellman equations, see [6] for a mathematical analysis on dy-
namic programming.

There are many approaches for estimating such optimal solutions. In this
work, we will use the temporal difference learning rule

V (st) := V (st) + α [rt + γV (st+1) − V (st)]

here α > 0 is a small learning rate.

3 Reinforcement Learning for Tetris

A tabular representation of the V -Function is too large to be stored in any
available memory. Just take into account every one of the 200 cells is allowed to
be in 2 different states. So the upper bound for the whole Tetris board is 2200

possibilities. This can be reduced by a few percents through some observations.
For example, a row can never be totaly filled or empty. So there are 210−2 = 1022
possible states per row, this mades up a number of 102220 states for the whole
board, which is roughly 96% of 2200, and therefore the problem of storing such
immense amounts of data cannot be solved this way.

In a first attempt, we limited our view to the two topmost used rows which
are not empty. Current architectures easily deal with the resulting 220 ≈ 106

state values. However, these experiments did not lead to any utilizable results.
We traced this back to the inability of such a representation to map the state
transitions triggered by placing pieces. As very different states were assigned to
same table positions, their conflicting estimates did not allow to archieve any
generalization.

In the next attempt the agent’s view was limited to the top four used rows.
If every cell is represented by two states, four rows of ten cells would have
240 ≈ 1012 possible state values, which is too large. We tried an other encoding
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Fig. 2: Median, upper and lower quartile values for a simple reward function.
The agent was trained over 200,000 games. First column, labelled by 0, repre-
sents the untrained agent using the fixed policy.

of the state to reduce this number to a feasible size. The agent’s view was divided
into ten columns each one consisting of four cells. The colums’ states were coded
separately by noting the top used cell height. This resulted in five possible states
per column. As there are ten columns the agent’s view can be represented by
510 ≈ 107 different states. This state representation led to utilizable results. It
was used in this work. The drawback of this approach is the inability of the
agent’s view to represent free cells under used ones. We tried larger views with
heights of five or even six rows and an analogical state representation. They did
not bring further substantial improvement, because many of the state transitions
could be represented in the four row view. Instead, the results of our tests were
disappointing. As a reason for this behavior we found that the increased number
of state values required a corresponding number of episodes to be played until
usable state value estimates were collected. So we did not pursue this way.

Tetris cannot be won, as shown in [7]. Therefore it is less promising to give
some rewards at only at the end of the game. To avoid such weak rewards to the
agent, a heuristic evaluation function for all the possible states are defined to
get some more valuable rewards at any time step t. These functions have been
constructed by a linear combination of weighted features.

Figure 2 shows the performance for a simple reward function. It is determined
by the highest used (not empty) row of the board before and after taking an
action. This difference (multiplied by a scaling factor 10) has been used as
evaluation fuction for an action and sent to the agent as reward r(a, s) Using
this fixed function to select greedy actions and testing 1000 games, leads to the

134



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

G
am

in
g 

P
ie

ce
s

Games (*10,000)

Fig. 3: Median, upper and lower quartile values for a complex reward func-
tion. The agent was trained over 200,000 games. First column, labelled by 0,
represents the performance of the untrained fixed agent.

results plotted in the first boxplot (labelled by 0 to index the untrained agent),
Then, in the following the agent has been trained through 20 episodes each of
10,000 games. After each episode the agent has been tested again by 1000 games.
Numbers of played gaming pieces per test game are collected and plotted in a
simple boxplot, showing median, upper and lower quartile. We ran experiments
with different values for α und ε. For smaller values the achieved results were
similar to the ones shown here. The drawback was their time consumption,
which could be reduced by choosing larger values. As we let these values grow,
the learning became more and more unstable until the point where no positive
effects were seen at all. This was at values roughly ten times the ones mentioned
at the end of the paragraph. So we came up with values which have a good
learning effect. The parameters include a constant learning rate α = 1

100 , and
a slowly falling random action rate ε = 1

1+15 ln[n] , where n is the number of the
games used to train the Tetris agent. It can be observed that the fully trained
agent (after 20 episodes) outperforms the untrained agent slightly.

Figure 3 demonstrates an experiment using the same training parameters, but
utilizing a more informative reward function. At designing this function we made
several considerations how to improve the simple reward function. First of all,
looking at only the topmost used row renders state transitions below it invisible
to the reward function. Therefore we exchanged this feature against the average
of the heights of all ten columns. Our second thought concerned the inclusion
of holes between pieces as they were placed. This should be rated as negative
in regard to the aim of removing rows from the game board. Further ideas we
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had included a measure for the shape of the pile that was formed. A proposal
comprised simply summing up the absolute differences of neighboring columns.
That showed some promising results but did not satisfy our expectations. So we
refined this by squaring the differences before summing them up as we thought
larger steps should be counted more severe as small ones. We called the resulting
shape measure quadratic unevenness. Some more features were formulated and
experiments were ran with a range of weighted sums of these to find a suitable
reward function. Finally, we came up with the function used for figure 3. It
constists of a weighted sum of three features. The first feature is the average
of the heights over all 10 columns. This value is weighted by factor 5. The
second feature is the number of holes appearing between the pieces, this number
is then multiplied by 16. The last feature is the discussed criterion to measure
the roughness of the shape, the quadratic unevenness. This feature is weighted
by factor one. These three terms are summed up to the reward function. For
this reward fuction the performance is shonw in Figure 3, again the agent has
been trained 20 episodes each with 10,000 games. Testing results - based on
again 1000 testing games - are shown for the untrained agent (column 0) and
after each of the 20 episodes in Figure 3.

4 Conclusions

In this study reinforcement learning has been used to improve hand made fixed
policy strategies. In both cases the performance of the fixed policy was im-
proved significantly. Using this complex reward function as a fixed strategy to
evaluate states during the game, an average duration of 5,000 pieces per game
corresponding to 2,000 deleted rows per game was achieved. Adapting the state
value function V by a simple temporal difference learning procedure together
with the exploration of the state space using an ε-greedy policy the agent’s per-
formance increased on average to more than 20,000 pieces, see Figure 3. Similar
results, but with smaller performance gain, were achieved for the simple reward
function. Ongoing work includes more elaborated reinforcement learning tech-
niques and the application of meta learning heuristics.
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