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Abstract. In this work we propose taking noise into account when modeling the 
neuronal activity in a correlation-based type network. Volume transmission effects 
on connectivity are considered. As a result, an individual module can be set in an 
“activated” state via noise produced by the remaining modules. The stochastic 
approach could provide a new insight into the relation between functional and 
anatomical connectivity.  

1   Introduction 

Noise is always present in brain structures in vivo. It stems from several sources, like 
fluctuation of membrane potential, the very nature of the synaptic input (“synaptic 
noise”), and the variability of the inter-spike interval in the pattern of activity of a 
neuron [1].  
 Experimental and computational studies have demonstrated that noise has an 
important role in the sensory systems as well as in the cerebral cortex [1,2]. In the 
latter case, synaptic noise holds the membrane in a high-conductance state, which   
enhances the computational properties of the network, along with the ability of 
amplifying weak signals (stochastic resonance) [3] and the capability of detecting 
coincidences (high-temporal resolution) [1].  
 Our aim is to study the influence of noise on the correlated activities in a 
modular neuronal network by using the methods of nonlinear stochastic dynamics. At 
present, we will focus our attention on the activity of a single module in order to 
assess how noise produced by the “environment” (the remaining modules) affects its 
temporal activity profile. 

2   Model 

In our model the network consists of a series of small-sized modules of high intrinsic 
connectivity and sparse inter-module connectivity, all together forming a correlation-
based type network [4]. For each module it is possible to define an activity and a 
hard-wired connectivity. Activity (λ) is simply the fraction of active neurons in the 
module, whereas the hard-wired connectivity (h=M/N) is the ratio between the 
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average number of connections of a neuron (M) and the total number of neurons (N) 
in the module.  
 Modular neuronal distribution in cerebral structures is allegedly the way brain 
evolved to ameliorate learning and to adapt to changes. A neural function is assumed 
to be decomposed in a set of sub-functions each allotted to a specific module. 
Activities of modules are correlated, thus contributing and integrating each other [5]. 
       Neurons in the modules can communicate among themselves directly through 
axonal links and action potentials, and/or via volume transmission, i.e., through 
diffusion of neurotransmitters (NT’s) in the extra-cellular space. Such type of 
communication is possible because part of neurotransmitters spill out of the synaptic 
gap [6]. These two modes of communication coexist and seem to be both necessary to 
explain brain functions.   
      Module dynamics is expected to be complex and highly nonlinear owing to   
mechanisms which span different spatio-temporal scales. In what follows these 
mechanisms are discussed based upon experimental results available in the literature. 
A method is suggested for investigating noise influence on network dynamics. 

2.1  Neurotransmitters spillover  

Communication among neurons in a network is basically axonal-dendritic via 
synapses. However, this “hard-wired” type of communication is by no means the only 
way neurons can communicate. NT’s that spill out of the synaptic gaps also contribute 
to neurocommunication [7]. NT’s density in the extracellular space (ECS) increases 
with the number of active neurons, and it is controlled by diffusion, re-uptake, and 
enzyme degradation [8]. In the case of glutamate, Rusakov [7,8] found that NT’s 
actually reach post-synaptic (NMDA) receptors in adjacent synapses.  

Fig. 1: Arrival of action potential in the pre-synaptic zone (A) culminates in releasing 
neurotransmitters (small filled dots) in the cleft, thus micro-potentials are generated in the 
post-synaptic zone (B). Escaped neurotransmitters diffuse in the extra-cellular matrix (gray 
dots) reaching post-synaptic receptors (small filled rectangles) in the adjacent post-synaptic 
zone (D): new micro-potential are generated by means of diffusion. 

In the hippocampus, about 30% of NMDA receptors of a single synapse is activated 
by action of external glutamate. Thus, given sufficient activity, action potentials can 
be generated by NT’s spillover, which is a less expensive way of communication (see 
Fig.1). In contrast, glutamate spillover from pyramidal neurons can reach 

356



    

interneuron’s synapses where it can activate MG (metabotropic glutamate) receptors, 
which, in turn, enhances releasing of GABA, an inhibitory neurotransmitter. Thus, 
glutamate spillover is self contained through a feedback inhibitory effect [9].  

2.2   Functional hard-wired connectivity 

Diffusive neurotransmission due to NT’s spillover competes with hard-wired 
connectivity. When λ is low (Fig. 2, a), the density of neurotransmitters in the 
extracellular space is proportionally low, thus spillover effects are negligible. In this 
case, signaling essentially relies upon action potentials (AP) running along the links, 
which implies considerable amounts of metabolic energy (ATPs) for sustaining AP 
transmission as well as vesicle recycling [4]. As λ increases (Fig. 2, b), NT’s build up, 
thus diffusion mode prevails over, and partly replaces hard-wired communication, 
with less energy involved. Thus, only part of the M links are sufficient, the remaining 
ones (gray links in Fig. 2, b) being replaced by volume transmission.  Beyond a 
certain level of activity spillover inhibitory effects (as in the case of hippocampal 
glutamate) cooperate to reduce the activity by cutting out (“killing”) more hard links 
from the communication process. As a consequence, only M* of the M links are 
actually sufficient (active), the remaining M-M* being inactive (gray links). 
Thereafter, NT’s re-uptaking and degradation reduce NT’s concentration thus 
reviving hard-wired mode.   
 
 
 
 
 
 
 
 
 
 
 
 

        Fig. 2: (a) A few neurons are active (white circles): most links of an active neuron 
(central neuron) support action potentials; (b) most neurons are active: the extra-cellular 
NT’s concentration is high. An active neuron presents only few active links since most are   
replaced by diffusion; (c) in the initial phase (λ≤0.15) diffusive mode gradually replaces 
hard-wired mode. In the following descending phase (0.15<λ≤0.85) hard links are not only 
replaced by diffusion but they also are cut off by GABA inhibition: two synergic effects 
(“replace-and-kill”) concur towards reduction of the number of active links. In the last 
phase, neurotransmitters are “mopped up” through re-uptake and/or eliminated by enzyme 
degradation, thus reducing the influence of diffusion-mode. 

Spillover effects upon connectivity are taken into account by defining a “functional” 
hard-wired connectivity which depends on the level of extra-cellular NT’s 
concentration, or, equivalently, on λ . Thus, we have:    

  h (λ) = M*(λ) /N                                                   (1)   

a) b) c)  
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where M*(λ) is the number of active links per neuron for a given NT’s concentration. 
The simplest power-law for h(λ), which better describe how M* would vary with 
λ (see Fig. 2, c), is a 3rd order one, i.e. :  
                                        ( ) ( )3

0 0 0(λ) = a λ-λ +c λ-λ +d⎡ ⎤
⎣ ⎦h h                                     (2) 

where h0 is the hard-wired connectivity, and  a, c, d and λ0 are appropriate parameters. 
A gradual transition from hard-wired to diffusive modes may be relevant for 
stabilizing cell-assembly activity, and the theta rhythmic bursting activity involved in 
the hippocampal learning-memory functions [10]. 

2.3  Metabolic profile of a single modular neuronal network 

The metabolic cost for driving a single module of N0 neurons is written [4] as : 
                                              2 2

0 0C = N α λ + β λ⎡ ⎤⎣ ⎦h                                                  (3)  

where h0 is the hard-wired connectivity, and α and β specific cost coefficients.  
Replacing h0 with h(λ) in Eq. 3, the expression for the metabolic cost becomes a 5th 
order power law in λ. For similar results see Hopfield network [11]. Fig. 3 (left) 
shows the metabolic profile vs. λ in the range of meaningful values (λ=0,1). We 
assume C in Eq. 3 as a generalized  potential [4]. Thus, if initially λ<0.4, in absence 
of any external input, the activity goes to zero. For λ>0.4 the activity stabilizes at 
λ=0.8, i.e., at the minimum of potential energy.  

2.4  Single-module stochastic dynamics  

In order to assess how environmental noise influences the temporal activity profile of 
a module, we interpret the dynamics of λ(t) as the motion of a fictitious Brownian 
particle subjected to a potential like shown in Fig. 3 (left) [12]. The corresponding 
law of motion, in overdamped regime, is a Langevin equation [13], i.e.: 

                                         ( ) 0
dλ dC= + ε ξ t A cos t
dt dλ

− + ω                                         (4) 

where ε is the intensity of a white Gaussian noise  ξ(t), with the following statistical 
properties:                                                      
                                         ( ) ' 'ξ t  = 0 ;    ξ(t)ξ(t )  = δ(t-t )                                  (5) 

with δ(t) the delta function. The overdamped regime is justified by the strong 
dissipative character of biological neural structures. In Eq. 4, −dC/dλ is the driving 
force acting on the system, and A0cos ωt an external periodic force. 

3   Results: Noise-induced temporary module activation 

Noise produced by the remaining modules can actually play a role in driving the 
system towards the minimum of potential energy (λ=0.85 in Fig.3, left). In absence of 
noise (deterministic case), with initial values λini<0.4, the particle never enters the 
potential well, and returns to λ = 0 (absorbing barrier) in a time τ (escape time) that 

358



    

depends on λini. In presence of noise (stochastic case) and for identical initial 
conditions, the system can enter the potential well, remaining trapped for a while, and 
then escape reaching the threshold at λ = 0. In this case, τ becomes stochastic and 
increases considerably. In order to calculate τ in the metastable state we solve Eq.4, 
by numerical simulations in absence of external periodic force. We consider the mean 
escape time (MET) obtained by solving Eq.4 iteratively and averaging over N 
realizations. In our simulations MET is calculated for different initial values, λini, (see 
Fig.3, left) and several noise intensities ε. The number of realizations is N=104. The 
results are shown in Fig.3 (right). 
 
 

 

Fig.3. Left: Potential energy (C) of the system vs. activity.  The force –dC/dλ drives the 
activity of the module in the range (0,1). Right: Mean escape time τ vs. noise. For low noise 
intensity (ε<10−5), τ≈0: the activity quickly drifts to zero. For noise in the interval 10−4,10−2, 
τ exhibits a non monotonic behavior with a peak, whose value increases as λini approaches 
0.4 (left). For higher noise intensities (ε>10−2) the system quickly leaves the metastable state 
(τ≈0).  

From Fig.3 it is evident how appropriate levels of noise may cause module activation 
and allow the system to stay longer in the metastable state with the least consumption 
of metabolic energy. These features are compatible with a scenario where ATP′s 
resources are limited although renewable, and also account for spatio-temporal 
patterns of activity observed in the brain.  

4    Perspectives:  Application to functional neuro-imaging 

An important question is how to relate functional connectivity to anatomical 
connectivity [14]. This is a central issue related to the more general form-function 
problem in the brain. Functional connectivity, resulting from time-correlations of 
activities of separate brain regions, is actually measured through functional neuro-
imaging based on hemodynamic (fMRI, PET) or magneto-electric methods (EEG), 
yielding “functional connectivity maps” (functional networks). Unlike functional 
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connectivity, our proposed “functional hard-wired” connectivity is based on the actual 
anatomy, upon which a mechanism of selection of the links is superimposed. Thus, 
only active links are involved in the measured correlations. Experimental results 
obtained using hemodynamic-based methods could then be compared with our 
computer simulations, hopefully casting new light on the relation between functional 
and anatomical connectivities. 
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