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Abstract. The analysis of spectral data constitutes new challenges for machine
learning algorithms due to the functional nature of the data. Special attentionis
paid to the metric used in the analysis. Recently, a prototype based algorithm has
been proposed which allows the integration of a full adaptive matrix in the metric.
In this contribution we study this approach with respect to band matrices andits
use for the analysis of functional spectral data. The method is tested on data taken
from food chemistry and satellite image data.
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1 Introduction

The analysis of high dimensional functional data is a commontask in different fields of
natural sciences like medicine and chemistry. Prominent examples are mass spectrom-
etry data (MS) in the field of clinical proteomics, nuclear magnetic resonance spectra
(NMR) in the field of chemistry and metabolomics or spectral imagery acquired by
satellites to name just a few. Focusing on classification, prototype based classification
approaches such as Learning Vector Quantization (LVQ) as proposed by Kohonen [6]
or multiple extensions [3, 8] have already proven to be valuable for the analysis of high
dimensional data (see [9, 10]). Due to the complexity of the data the use of an appro-
priate distance measure is of special importance [13] to getan adequate representation
of the data. So-called relevance learning techniques [2] extend, e.g. the Euclidean dis-
tance, with weight factors for the different dimensions. Together with the prototypes
these factors are optimized with respect to the given classification task during train-
ing. This allows to scale the axes of the coordinate system ofthe data space in order
to obtain better adaptation towards clusters with axes-parallel ellipsoidal shapes. But
this approach ignores correlative effects between different features in general. The re-
cently introduced Generalized Matrix LVQ (GMLVQ) [1, 11] adapts a full matrix of
relevance factors in the distance measure. This accounts for pairwise correlations of
features and ellipsoidal clusters which are not axes parallel can be obtained. Yet, full
adaptive GMLVQ may suffer from the presence of too many adjustable parameters as
their number grows quadratically with the dimensions of input. This can lead to in-
stabilities and overfitting. In spectral data the order of the features is not arbitrary and
usually local correlations between neighbored dimensionsoccur. Due to this property,
the restriction of GMLVQ to the adaptation of band-limited matrices appears to be nat-
ural for the analysis of this kind of data. Hence, the number of free parameters can be
reduced without limiting the performance of the algorithm significantly. In this paper
we analyze this modification of GMLVQ on two different spectral data sets coming
from food chemistry studies and satellite remote sensing.
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2 Generalized Matrix LVQ

LVQ aims at parameterizing a classification scheme in terms of prototypes. Assume
training data(ξi, yi) ∈ R

N × {1, . . . , C} are given,N denoting the data dimension-
ality andC the number of different classes. An LVQ network consists of anumber of
prototypes which are characterized by their location in theweight spacewi ∈ R

N and
their class labelc(wi) ∈ {1, . . . , C}. Classification takes place by a winner takes all
scheme. For this purpose, a (possibly parameterized) similarity measuredλ is defined
in R

N . Often, the standard Euclidean metric is chosen. A data point ξ ∈ R
N is mapped

to the class labelc(ξ) = c(wi) of the prototypei for which dλ(wi, ξ) ≤ dλ(wj , ξ)
holds for everyj 6= i (breaking ties arbitrarily).

Learning aims at determining weight locations for the prototypes such that the
given training data are mapped to their corresponding classlabels. A very flexible
learning approach has been introduced in [4]. It is derived as a minimization of the cost
function

∑

i

Φ

(

dλ
J − dλ

K

dλ
J + dλ

K

)

(1)

where Φ is a monotonic function, e.g. the identity or the logistic function, dλ
J =

dλ(wJ , ξi) is the distance of data pointξi from the closest prototypewJ with the same
class labelyi, anddλ

K = dλ(wK , ξi) is the distance from the closest prototypewK

with a different class label thanyi. Taking derivatives with respect to the prototypes
and metric parameters yields gradient based adaptation rules. The choice of the sim-
ilarity measure as standard Euclidean metric yields GLVQ [8]. The squaredweighted
Euclidean metricdλ(w, ξ) =

∑

i λi(wi−ξi)
2 whereλi ≥ 0 and

∑

i λi = 1 constitutes
a powerful alternative, GRLVQ [5], particularly suitable for high dimensional data with
input dimensions of different (but a priori unknown) relevance. In GMLVQ, a full ma-
trix which can account for pairwise correlations of the dimensions, is used. The metric
has the form

dΛ(w, ξ) = (ξ − w)T Λ (ξ − w)

whereΛ is anN × N matrix. The above similarity measure only corresponds to a
meaningful distance ifΛ is positive (semi-) definite. We can achieve this by substitut-
ing Λ = ΩΩT . Without loss of generality we consider only symmetricΛ. We can
furthermore assume thatΩ itself is symmetric as the (unique) symmetric square root
of Λ = Ω2 always exists. To obtain the adaptation formulas we need to compute the
derivatives of (1) with respect tow andΩ. We get the updates

∆wJ = + ε1 · φ
′(µ(ξ)) · µ+(ξ) · ΩΩ · (ξ − wJ )

∆wK = − ε1 · φ
′(µ(ξ)) · µ−(ξ) · ΩΩ · (ξ − wK)

∆Ωlm = − ε2 · φ
′(µ(ξ)) ·

(

µ+(ξ) ·
(

[Ω(ξ − wJ )]m(ξl − wJ,l) + [Ω(ξ − wJ)]l(ξm − wJ,m)
)

−µ−(ξ) ·
(

[Ω(ξ − wK)]m(ξl − wK,l) + [Ω(ξ − wK)]l(ξm − wK,m)
)

)

for the prototypes and matrix elementsΩlm with µ(ξ) = (dΛ
J − dΛ

K)/(dΛ
J + dΛ

K),
µ+(ξ) = 2 · dΛ

K/(dΛ
J + dΛ

K)2, andµ−(ξ) = 2 · dΛ
J /(dΛ

J + dΛ
K)2. (See [1] for the
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Fig. 1: Left: Multiple spectra of both classes taken from the Tecator data set. Right:Average
spectra of all classes of the satellite data set. The class labels are indicated by different point sym-
bols.• Alfalfa, H Soil, F Corn,¥ Oats,̈ Red Clover,J Rye,I Soybeans,N Water, * Wheat1,
+ Wheat2

derivation of these formulas.) Thereby, the learning rate for the metric can be chosen
independently of that for the prototypes. Note that the update preserves the symmetry
of Ω. After each update,Ω is normalized to prevent the algorithm from degeneration.
We set

∑

i Λii =
∑

i,j Ω2
ij = 1 which fixes the sum of diagonal elements and, thus,

the sum of eigenvalues ofΛ.
Band-limited GMLVQ can be achieved by limiting the number ofnon-zero adjacent
diagonals inΩ or Λ, respectively. Ifk adjacent diagonals above and below the main
diagonal are considered inΩ the respective bandwidth including the main diagonal is
given asn = 2 · k + 1 in Λ. We refer to this as GMLVQ-n. This restriction leads to
a focus on locally correlated frequency bands in spectral data. The parametern should
be in correspondence to the correlation range in the spectra, which is problem specific.
Note that GMLVQ-1 corresponds to GRLVQ.

3 Data

We test the approach using the Tecator benchmark data set which is available at
http://lib.stat.cmu.edu/datasets/tecator. It contains215 infrared absorption spectra of
meat samples. Each spectrum has been measured at 100 wavelengths ranging from
850nm to 1050nm. The classification task consists in the prediction of the binary fat
content (low/high) of the probes. Figure 1 (left) visualizes several example spectra of
both classes. Apart from a tendency towards dints around channel41 for high fat con-
tent, a substantial overlap of the classes is evident.
Furthermore, the algorithm is applied to the Flightline C1 data set obtained form [7]
which contains 12-band multispectral gray-value data. It was taken by an M7-scanner
over Tippecanoe Country, Indiana and discriminates between 10 different classes (Al-
falfa, Soil, Corn, Oats, Red Clover, Rye, Soybeans, Water, Wheat1, Wheat2). The
spectral window 0.4µm to 1.0µm covers the visible - near-infrared range. The visi-
ble range mainly judges leaf pigments (chlorophyll) and theinfrared range is mostly
responsible for cell structures (spongy-mesophyll cells). The data set is splitted into
11451 samples for training and 70549 samples for testing. Figure 1 (right) depicts the
mean spectra of the different classes. A more detailed description of the data is available
in [7].
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4 Experiments and Results

We apply the proposed modification of GMLVQ with different bandwidth settings and
compare the classification performance to known results taken form [7, 12]. The fol-
lowing statements hold for both data sets: the samples are normalized to zero mean and
unit variance in each feature and we employ one prototype perclass respectively. The
learning rates are continuously reduced in the course of training. The initial values are
set toε1 = 5 · 10−3, ε2 = 5 · 10−4 (Tecator data) andε1 = 0.01, ε2 = 10−4 (satellite
data). We use the same learning rate schedule as in [1] withc = 10−4. Pretraining
with simple GLVQ is mandatory in all experiments. Because ofthe small number of
samples contained in the Tecator data set, the spectra are partitioned randomly into4/5
samples for training and1/5 patterns for testing averaged in a5-fold cross validation.
Figure 2 and Table 1 summarize the obtained classification accuracies. We observe that
adapting only a small number of bands in the relevance matrixis sufficient to clearly
improve the classification performance compared to GRLVQ. The learning curves for
the satellite data depict a clear gap between the accuraciesobtained with the settings
k = 0 andk = 1. Furthermore, we can conclude that the number of bands needed to
obtain the performance of GMLVQ is rather small compared to the dimension of the
input data. We find the bandwidths ofn = 21 for the Tecator data set andn = 5 for
the satellite data set to be sufficient to achieve this performance. Adding further bands
yields no significant benefit for the classification any more.Accordingly, correlations
between features far apart in the sequence of all features can be ignored without con-
straining the performance of the GMLVQ-algorithm significantly. Thus the number of
free parameters can be reduced, efficiently. It is interesting to note, however, that the
learning curves indicate that the system needs more training epochs to reach the same
performance for smalln in case of high input dimensionality (Tecator data).
Figure 3 visualizes the relevance matrices obtained by GMLVQ and GMLVQ-21 on the
Tecator data set. The diagonal elements of the full matrix reflect that the region around
feature 41 is ranked highest. The most relevant range captures the indices 30 to 50.
This conforms to the visual impression given in Figure 1 and the property of local cor-
relations in spectral data. Accordingly, off-diagonal elements which are significantly
different from zero are detected only in the neighborhood ofthe main diagonal around
index 41. Consequently, the restricted band matrix in GMLVQ-21 is adequate to repre-
sent the meaningful structure in the data appropriately andto achieve the classification
performance of GMLVQ.
Our findings for the satellite data are in good agreement withprior results published
in [7]. The accuracies on the test data given in [7] are slightly better (≈ 5% − 7%)
than our best results. However, the complex feature selection scheme used in [7] im-
plies a lot more computation effort to achieve this performance. Further it should be
mentioned that this feature selection is not an inherent part of the classifier method. The
detailed steps in [7], p. 179 suggest that a potential bias with respect to the feature selec-
tion could have effected these results. Therefore the method independent experimental
settings given here and in [7] are slightly different, complicating direct comparisons.
Considering the results including the expert knowledge in [7] about relevant spectral
bands for vegetation discrimination, interesting findingscan be made. In particular
both visible and infrared frequencies contribute to the identification. A bandwidth of 5
in the given data set comprises at least parts of the visible and near-infrared spectrum.
Therefore the respective correlations are taken into account. Smaller bandwidths lead to
a loss of this correlation information, whereas larger ones, above 5, give no significant
information gain. For this optimum 5-band case the experiment was repeated using 5
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prototypes per class. We achieved a prediction of 86.4% which is comparable to the
result given in [7] with 91% using only 4 features. This selection was done such that
the features are almost independent, but covering visible and infrared frequencies. The
main diagonal elements of matrixΛ (relevance profile), reflect that red and infrared
frequencies are especially relevant for the classification. This underlies the above men-
tioned features of chloro- and mesophyll level for vegetation discrimination.

Tecator Satellite
Algorithm Prediction Algorithm Prediction
GMLVQ-1 66.7% GMLVQ-1 78.5%
GMLVQ-3 66.7% GMLVQ-3 82.9%
GMLVQ-11 84.3% GMLVQ-5 86.2%
GMLVQ-21 97.1% GMLVQ-7 86.3%
GMLVQ-31 97.1% GMLVQ-9 86.6%
GMLVQ-41 96.7% GMLVQ-11 86.4%
GMLVQ-F 95.7% GMLVQ-F 86.6%
SVM-RBF 68.9% SVM-RBF 70.7%
SVM-Lin 73.3% SVM-Lin 85.3%
C-GRLVQ 97% C-GRLVQ n.a.

Table 1: Classification accuracies achieved on the Tecator- and the satellite data setusing differ-
ent bandwidth settings for GMLVQ-n (1 to F-full) in comparison to correlation based GRLVQ
(C-GRLVQ) with20 prototypes [12] and two types of a SVM (Lin-linear, RBF-radial basis func-
tion kernel) obtained using Yale (http://yale.cs.uni-dortmund.de)
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Fig. 2: Prediction accuracies as a function of training time for both data sets using matrices of
different bandwidths. Left: Tecator data set (matrix adaptation starts after 20 epochs). Right:
Satellite data set (matrix adaptation starts after 10 epochs).

5 Conclusion

In this article band-limited GMLVQ has been investigated for classification of spectral
data. For both considered data sets we observe an overall improvement in prediction,
compared to simple GRLVQ. The improvement is the same as achieved by unrestricted
GMLVQ. However band-limitation can be applied successfully without significant in-
formation loss. The obtained optimum bandwidths can be discussed in the light of
spectra properties of the underlying problems. Thus band-limiting can be used to re-
duce the number of adjustable parameters of standard GMLVQ to improve the stability.
These findings may carry over to other kinds of spectral data such as mass spectra
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Fig. 3: Visualization of the relevance matrices obtained by GMLVQ (left) and GMLVQ-21 (right)
on the Tecator data set. The diagonals are set to zero in the off-diagonal-presentations.

(MS) or Ion Mobility Spectroscopy (IMS) which is an important analysis technique in
chemistry and the field of security. In our experiments we considered only the effect of
symmetric correlations between neighbored features usingdifferent bandwidths. This
maybe not always optimal with respect to the underlying datacharacteristics. In future
work also more generic correlation scenarios will be analyzed.
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