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Abstract. Driven by the growing demand of personalization of medical
procedures, data-based, computer-aided cancer research in human patients
is advancing at an accelerating pace, providing a broadening landscape
of opportunity for Machine Learning methods. This landscape can be
observed from the wide-reaching view of population studies down to the
genotype detail. In this brief paper, we provide a sweeping glimpse, by no
means exhaustive, of the state-of-the-art in this field at the different scales
of data measurement and analysis.

1 Introduction

The growing demands from ever better informed patients, with their increasingly
sophisticated expectations from doctors and from health systems as a whole, con-
form one of the forces driving the current trend towards personalized medicine.
The true personalization of medical procedures is a difficult task, and balancing
the improvement of healthcare delivery it entails and the corresponding escalat-
ing costs in all its phases -prevention, diagnosis, prognosis, and therapy- maybe
beyond reach for most health systems.

Cancer research in human patients is, in any case, advancing at an acceler-
ating pace driven by new data modalities, a socioeconomic need for cost con-
tainment through prevention and early diagnosis, and the increasing patient
demands for the personalisation of therapy. These developments accord with
the 4P prospective medicine agenda (predictive, preventive, personalised and
participatory) [1], which recognises the pivotal role that experimental and ob-
servational data have in systems biology. Whereas this agenda is often closely
coupled with the huge potential of pharmacogenomics, which has information

∗Alfredo Vellido is a researcher within the Ramón y Cajal program of the Spanish MEC and
acknowledges funding from the MEC I+D project TIN2006-08114. Paulo J.G. Lisboa and Elia
Biganzoli acknowledge funding from the Biopattern Network of Excellence FP6/2002/IST/1;
N. IST-2002-508803, as well as numerous discussions and the active participation of the Biopat-
tern consortium members.

55



processing at is very core, 4P is in reality much broader than this, covering
the complete range of observation scales from genotype through to population
cohorts, as shown in Table 1.

This tutorial is a guided tour of this landscape of clinical need and enabling
data-based science, much of which relies on, and requires further advances in,
Machine Learning (ML) methods. In order for research to retain clinical rel-
evance, it is necessary to distinguish clearly between methodological studies,
which form the basis of this brief review, and the development of medical DSS,
for which formal frameworks and guidance are provided elsewhere [2].

This paper is structured top-down following the hierarchy of clinical mea-
surement scales, starting with some of the unfortunately rare examples of diag-
nostic support algorithms and systems that have been taken as far as prospective
evaluation. This is followed by an overview of flexible models for the analysis of
survival data, which is a mainstream task to study prognostic outcome over time,
a critical factor in determining choice of therapy. Then, we provide a glimpse of
the rapidly growing field of multi-modal imaging, where anatomical signals are
fused with metabolic data often at different spatial resolution and with high di-
mensionality. Drilling down to the next level of study, cancer histology is moving
towards characterization of disease biology, starting with exploratory clustering
and visualization studies looking for tumour subtypes. Finally, there is much
interest in mapping out networks of protein activation, possibly the route from
genotype to phenotype, or disease expression.

In all these research enterprises, ML experts have to fight the ground of
acceptance by medical institutions and practitioners. Therefore, the role of ML
methods in human cancer research should be carefully defined and justified. One
way to ensure this is by consolidating their development through international
large-scale research projects. Some examples of these in the area of cancer
research in Europe are described in section 3.

2 Application of machine learning methods to human can-
cer research

This section illustrates the application of ML methods to the different study
types listed in Table 1, emphasizing key factors that influence the clinical rele-
vance of the work by reference to particular case studies. Comprehensive reviews
of applications can be found elsewhere [3, 4]. In the following, informative case
studies are drawn from the literature with particular reference to current ap-
plications developed with funding from the Biopattern European Network of
Excellence (www.biopattern.org).

2.1 Predictive diagnostics and rule generation for translational re-
search

One of the first diagnostic projects to thoroughly benchmark linear statistics
with neural networks and kernel methods, was the IOTA project (International
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Ovarian Tumour Analysis). This project has advanced as far as prospective
evaluation of the accuracy of diagnostic algorithms, that is to say where models
are kept fixed and applied predictively by clinicians during consultation. The
second phase of this project has records from over 2,000 patients.

External validation, i.e. on IOTA data from clinical centres different from
those from where the training data were collected, showed similar performances
between linear and non-linear logistic regression models, but suggested that ker-
nel models such as the Suport Vector Machine (SVM) and the Relevance Vector
Machine (RVM) may be more accurate [5]. It is interesting that this paper
reported better prediction for models using measurements that did not require
higher ultrasound skills, suggesting the reliability of the measurements may have
a significant impact on the results. This points towards the importance of suit-
able data standards and clinical protocols, a matter sometimes given scant at-
tention by the ML community before embarking on empirical modelling - yet a
critical factor the value of the study [2].

The selection of logistic regression for the clinical interface in the former
study should not surprise us. It is the interpretability of this model that makes it
attractive to clinicians. One of the potential drawbacks affecting the application
of ML methods in general is indeed the usually limited interpretability of the
results they yield. This is again an extremely sensitive issue in a critical context
such as clinical oncology and, therefore, it is of interest to translate the analytical
models into the domain language of clinical experts. One way to do this is by
explaining the operation of ML models using rule extraction methods. Several
authors have, in recent years, resorted to rule extraction from ML models in
cancer research. Many of these involve the analysis of breast cancer data [6, 7, 8],
although rule extraction from the classification of other cancer pathologies such
as ovarian tumours [9] has also been implemented.

2.2 Survival data analysis

Once a cancer is diagnosed, attention turns towards prognosis and the choice of
therapy. Prognostic modelling requires a smooth fit of outcome data collected
over varying periods of time, ranging from a few days to several decades. This is
known as time-event-modelling, where the event of interest may be remission due
to the therapy, or recurrence, or mortality, either specifically due to the disease
or from any cause. Once again, the definition of the patient cohort to investigate
is critical to the clinical value of the study, and preferences vary between clinical
domains and even across geographical areas, even within Europe. Nevertheless,
from the statistical viewpoint, this task is characterised by the occurrence of
censorship, or loss to follow-up.

57



S
ca

le
C

li
n
ic

al
d
ri

ve
rs

S
tu

d
y

ty
p
es

R
el

ev
an

ce
to

M
L

m
et

h
o
d
s

P
o
p
u
la

ti
o
n

In
te

g
ra

te
d

su
p
p
o
rt

fo
r

p
a
-

ti
en

ts
.

E
p
id

em
io

lo
g
y

F
o
rm

a
l

a
cq

u
is

it
io

n
a
n
d

va
li
d
a
ti

o
n

p
la

tf
o
rm

s:
d
a
ta

st
a
n
d
a
rd

s
a
n
d

cl
in

-
ic

a
l

p
ro

to
co

ls
fo

r
p
ro

sp
ec

ti
v
e

a
n
d

re
tr

o
sp

ec
ti
v
e

st
u
d
ie

s.

In
d
iv

id
u
a
ls

(s
y
st

em
le

v
el

)
D

is
ea

se
B

io
lo

g
y

a
n
d

C
o
m

p
u
te

r-
A

id
ed

D
ec

is
io

n
S
u
p
p
o
rt

.

P
er

so
n
a
li
se

d
D

ec
is

io
n

S
u
p
p
o
rt

w
it

h
In

-
te

rf
a
ce

s
fo

r
C

li
n
ic

ia
n
s

a
n
d

P
a
ti

en
ts

;
P
er

so
n
a
li
se

d
M

o
n
it

o
ri

n
g
;

a
n
d

P
o
in

t
o
f

C
a
re

D
ia

g
n
o
st

ic
s.

P
re

d
ic

ti
v
e

d
ia

g
n
o
st

ic
s

a
n
d

ru
le

g
en

-
er

a
ti

o
n

fo
r

tr
a
n
sl

a
ti

o
n
a
l
re

se
a
rc

h

C
li
n
ic

a
l

si
g
n
s

(o
rg

a
n

le
v
el

)
D

is
ea

se
B

io
lo

g
y,

C
o
m

p
u
te

r-
A

id
ed

D
ec

is
io

n
S
u
p
p
o
rt

,
R

e-
sp

o
n
se

to
T

h
er

a
p
y,

a
n
d

T
u
-

m
o
u
r

D
el

in
ea

ti
o
n
.

P
er

so
n
a
li
se

d
D

ec
is

io
n

S
u
p
p
o
rt

w
it

h
In

-
te

rf
a
ce

s
fo

r
C

li
n
ic

ia
n
s

a
n
d

P
a
ti

en
ts

;
P
er

so
n
a
li
se

d
M

o
n
it

o
ri

n
g
;

a
n
d

P
o
in

t
o
f

C
a
re

D
ia

g
n
o
st

ic
s

L
o
n
g
it

u
d
in

a
l
d
a
ta

a
n
a
ly

si
s
fo

r
p
ro

g
-

n
o
st

ic
m

o
d
el

li
n
g

P
h
y
si

o
lo

g
ic

a
l

m
e
a
su

re
m

e
n
t

(t
is

su
e

le
v
el

,
1
0
−

3
−

1
0
−

2
m

)

D
is
ea

se
B

io
lo

g
y,

C
o
m

p
u
te

r-
A

id
ed

D
ec

is
io

n
S
u
p
p
o
rt

,
R

e-
sp

o
n
se

to
T

h
er

a
p
y,

a
n
d

T
u
-

m
o
u
r

D
el

in
ea

ti
o
n
.

M
u
lt

im
o
d
a
l

D
a
ta

F
u
si
o
n
;

V
ir
tu

a
l

P
h
y
si

o
lo

g
ic

a
l
H

u
m

a
n
.

F
u
si
o
n

o
f
a
n
a
to

m
ic

a
l
a
n
d

fu
n
ct

io
n
a
l

d
a
ta

in
cl

u
d
in

g
d
iff

er
en

t
m

ea
su

re
-

m
en

t
m

o
d
a
li
ti

es

Im
m

u
n
o
h
is

to
-

ch
e
m

is
tr

y
(c

el
l

le
v
el

,
1
0
−

5
−

1
0
−

4
m

)

D
is
ea

se
B

io
lo

g
y,

C
o
m

p
u
te

r-
A

id
ed

D
ec

is
io

n
S
u
p
p
o
rt

,
R

e-
sp

o
n
se

to
T

h
er

a
p
y,

a
n
d

T
u
-

m
o
u
r

D
el

in
ea

ti
o
n
.

In
te

g
ra

ti
o
n

w
it

h
h
ig

h
er

le
v
el

d
a
ta

li
n
k
ed

to
cl

in
ic

a
l

ex
p
er

ti
se

a
b
o
u
t

th
e

p
a
th

o
lo

g
y,

a
n
d

P
h
a
rm

a
co

g
en

o
m

ic
s.

H
ig

h
-d

im
en

si
o
n
a
l

d
a
ta

m
o
d
el

li
n
g

fo
r

d
ia

g
n
o
st

ic
a
n
d

la
b
o
ra

to
ry

im
a
g
-

in
g

P
h
e
n
o
ty

p
e

(p
a
th

w
ay

s,
1
0
−

7
−

1
0
−

6
m

)

D
is
ea

se
B

io
lo

g
y,

C
o
m

p
u
te

r-
A

id
ed

D
ec

is
io

n
S
u
p
p
o
rt

,
R

e-
sp

o
n
se

to
T

h
er

a
p
y,

a
n
d

T
u
-

m
o
u
r

D
el

in
ea

ti
o
n
.

In
te

g
ra

ti
o
n

w
it

h
h
ig

h
er

le
v
el

d
a
ta

li
n
k
ed

to
cl

in
ic

a
l

ex
p
er

ti
se

a
b
o
u
t

th
e

p
a
th

o
lo

g
y,

a
n
d

P
h
a
rm

a
co

g
en

o
m

ic
s.

K
n
ow

le
d
g
e

d
is

co
v
er

y
fr

o
m

d
a
ta

,
cl

u
st

er
in

g
a
n
d

v
is

u
a
li
za

ti
o
n

G
e
n
o
ty

p
e

(g
en

es
,

1
0
−

9
−

1
0
−

8
m

)

D
is
ea

se
B

io
lo

g
y,

C
o
m

p
u
te

r-
A

id
ed

D
ec

is
io

n
S
u
p
p
o
rt

,
a
n
d

R
es

p
o
n
se

to
T

h
er

a
p
y.

E
x
p
lo

ra
to

ry
d
a
ta

a
n
a
ly

si
s

fo
r

h
y
p
o
th

e-
si

s
g
en

er
a
ti
o
n
.

M
o
d
el

li
n
g

p
ro

te
in

n
et

w
o
rk

s,
w

it
h

fe
w

er
o
b
se

rv
a
ti

o
n
s

th
a
n

p
o
te

n
ti

a
l

p
re

d
ic

to
rs

T
ab

le
1:

O
ve

rv
ie

w
of

th
e

ro
le

of
da

ta
an

al
ys

is
in

hu
m

an
ca

nc
er

re
se

ar
ch

.

58



Prognostic modelling for single and multiple competing risks was originally
proposed with the Partial Logistic Artificial Neural Network (PLANN) in [10].
This model can be regarded as an extension of the Multi-Layer Perceptron to
model censored data within the theoretical framework of Generalised Linear
Models. It has since been extended in [11]. Clearly the potential for overfitting
is ever present in non-linear modelling, so the well-known Bayesian regularisation
framework, with a multivariate normal approximation of the evidence term, was
applied in [12]. Alternative Bayesian frameworks have also been proposed for
survival modelling, notably the Conditional Hazard Estimation Neural Network
(CHENN) model [13] and, more recently, an SVM implementation featured in
this special session [14].

In addition to modelling the conditional event probability over time, it is
essential to have rigorous measures of the ability of the model to discriminate
between patients at different levels of risk. This requires a new index that is
closely related to the AUROC but applies over time and in the presence of
censorship, known as the time-dependent c-index (CTD) [15]. A double-blind
evaluation of the performance accuracy for a range of linear, spline and neural
network survival models was carried out for a large data set of uveal melanoma
(cancer of the eyeball) in [16].

The rule extraction framework can be applied to severity of risk indices de-
rived for longitudinal data, showing that it is possible to use the neural network
as the generating function to derive transparent Boolean risk-allocation rules
that stratify patients by risk practically as accurately as the original network
model [17].

2.3 Multi-modal data fusion

Over the last two decades, computing-based advances in biomedical engineering
have led to ever more complex measurement, especially moving from anatom-
ical imaging, which is restricted to identifying shapes, to functional imaging.
Of particular importance for the future is the fusion of anatomical and physio-
logical modalities. For instance, Magnetic Resonance Imaging (MRI) measures
only the density of free water in tissue, while MR Spectral Imaging (MRSI) is
specific to particular metabolites derived from a multiple localised MR Spectra.
Once again, kernel methods have been successful in carrying out this data fusion
[18]. However, there have been approaches to decision support based on visu-
alisation, rather than discrimination. This is the so-called nosological imaging,
where patient-specific topographic visualisation combining MRI/MRS is created
with low-dimensional visualisation mappings of MRS data, using GTM or SOM,
and then projected back into the spatial MRI space [19]. These methodologi-
cal developments are showing potential for clinical decision support for tumour
delineation, both pre-operatively and for guided surgery. Finally, imaging of
laboratory cytology is understudied by the ML community, given the clinical
importance and apparent subjectivity of some of the key tests required to assess
cancer progression. For a review on this subject, see [20].
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2.4 Knowledge discovery from data, clustering and visualization

Historically, the progression of cancer has been measured clinically from the
size ot he tumour (T-stage), involvement of the lymphatic system (N-stage)
and Metastatic spread (M-stage), which together form the TNM staging rec-
ommended by the World Health Organisation. The next step from this is to
evaluate the differentiation between the tumour cells from the original normal
cells from which they grew. This requires both identification of relevant markers
(e.g. [21]) and the development of robust clustering and visualisation algorithms,
preferably with the capacity to produce low-dimensional linear projections with
minimal mixing of pre-defined cluster labels.

An orthogonal methodological approach is to define latent spaces on which
to characterise high-dimensional data, in particular for identification of outliers.
This can benefit from the use of heavy tailed basis functions within accepted
Bayesian visualisation models [22]. The aspect of visualisation is also developed
further in this special session [23].

New signal modalities tend to be high dimensional and are very difficult to
interpret in isolation, thus relying on multivariate analysis. One aspect of this
still current research is whether to use multivariate selection or resort to pro-
jective dimensional reduction methods, such as Principal Components Analysis
(PCA) and Independent Components Analysis (ICA). An early study compar-
ing the two approaches showed that ICA identifies in brain tumour spectroscopy
two main signal types, closely resembling necrotic tissue and infiltrating tissue.
These two degrees of freedom are useful in the differential diagnosis of high-grade
astrocytic tumours [24]. More recent work with kernel methods has explored the
concept of bagging to achieve robustness in discrimination [25]. The issue of fea-
ture selection is revisited in two papers from this special session [26, 27].

2.5 Modelling protein networks with fewer observations than poten-
tial predictors

A related approach to clustering, but set typically within the framework of
Bayesian Graphical Models, is model-based clustering. One such approach is
to layer the graph to form a latent model that is applicable even to very high di-
mensional data, such as Tissue Micro Arrays (TMA) which may comprise several
thousand measurements yet total a sample size of only a few hundred patients.
The approach of Latent Dirichlet Allocation has been applied to a set of breast
cancer markers, resulting in an initial differentiation of sub-types which will no
doubt be followed-up by studies from other clinical centres [28].

Clearly, probe selection is also a necessary part of the exploratory analysis
of data for bioinformatics, and this is the subject of a paper in this special
session [29]. Interestingly, this paper is concerned with adjuvant therapy that
is applied prior to surgical intervention. The need to early adjuvant therapy is
also motivated by the “dormancy” hypothesis, initially substantiated by careful
analysis of event-rate curves in longitudinal data modelling for patients with
early breast cancer. It was found that a proportion of these succumbed to
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distant metastases within a relatively short period of having surgery. The current
hypothesis is that specific sub-types will spread to other organs early but emit
systemic signals to keep the metastases dormant.

A further and final consideration under this section is the need to careful reg-
ularisation of any statistical models with more predictors than observations. In
particular, the independence relationships between covariates which form the ba-
sis for graphical models, can be difficult to establish robustely since they may not
be observed under particular conditional constraints. This is the issue of “faith-
fulness” for which the Partial Correlation algorithm provides a computationally
efficient solution [30]. The impact of approximate deterministic relationships on
faithfulness is followed-up in this special session [31].

3 Machine Learning for cancer research in current Euro-
pean research projects

The European Commission Information and Communication Technologies (ICT)
for Health Unit of the Information Society and Media Directorate General, man-
ages a series of international research projects in the medical ambit, funded
under the Sixth Framework program (FP6). Within the program’s 4th call,
“Integrated biomedical information for better health”, several projects concern
cancer research more or less directly. All these projects involve, in one way or
another, data analysis, and some of them realize it through data mining or com-
putational intelligence methods, often related to ML. In Table 2, we can find a
summary of the general goals of some of these projects, including more specific
data analysis goals and the use in them of ML and related methods.

4 Conclusion

The latest data [32] of the EUROCARE research collaboration indicate that
the gap between European countries in cancer survival is narrowing, suggesting
substantial improvement in cancer care in countries with poor survival.

One of the keys to the improvement of cancer survival figures is discovery-
driven translational research and, as part of it, the development of efficient
medical DSS for the support of medical diagnosis and prognosis of pathologies.
ML can provide, coalescing with more traditional statistical approaches, robust
methods to be deployed at the core of these DSS. In such an integrated framework
a key role is played by a substantial evaluation component, which, according to
the principles of Evidence-Based Medicine should be covered by Biostatistics, to
be merged with the ML approach.

In order to pass from adolescence to fruitful maturity, ML studies of medical
data must broaden their focus beyond technical detail to pay greater attention to
medical requirements. Over the last decade, clinicians and medical researchers
have become more aware of what these methods are and what can they achieve,
so that closer collaboration with them should help the data analyst to drive data-
based studies according to key clinical questions, therefore building into study
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design relevance. A further challenge that ML practitioners will have to face
in coming years is that of data management, as multi-centre and international
databases become more of a standard, while the available biomedical signal for
analysis becomes increasingly multivariate, multiscale and multimodal [33].
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Project
name

General goals Use of ML and related methods

ACGT It aims to fill-in the technological
gaps of clinical trials for breast
cancer and paediatric nephrob-
lastoma. The project will develop
a Biomedical GRID infrastruc-
ture for sharing clinical and ge-
nomic expertise, helping to iden-
tify what determines which form
of treatment suits which patient.

Data mining tools, using R lan-
guage in a grid environment, in-
cluding SOM, k-Means and Sam-
mon’s mapping in combination
with statistical techniques. These
are combined with tools for in-
teractive visualization. It in-
cludes a data mining methodolog-
ical framework.

ASSIST The project aims to provide med-
ical researchers of cervical can-
cer with an environment that
will unify multiple patient record
repositories. They will be able
to combine phenotypic and geno-
typic data and perform associ-
ation studies on larger multi-
center sets of patient records.

It claims that, given a hypothe-
sis that needs validation, the sys-
tem must be able to process rel-
evant records and mine the col-
lected data. Mixed text and data
mining are integrated in a work-
flow process using weighted fuzzy
methods, neural networks, and
support vector machines.

Biopattern This project’s goal is to develop
a pan-European, intelligent anal-
ysis of a citizen’s bioprofile; to
make it remotely accessible to pa-
tients and clinicians; and to ex-
ploit it to combat ovarian, breast
and brain cancers, leukaemia and
melanoma.

It proposes to provide online
novel computational intelligent
techniques for the analysis of
bioprofiles, including ANNs,
evolutionary algorithms, SVMs,
Bayesian methods, Adaptive
Resonance Theory, Tree models,
Fuzzy techniques, etc.

Health
Agents

This project plans to create a
multi-agent distributed DSS for
the early diagnosis and prognosis
of brain tumours. A distributed
Data Warehouse with a network
of interconnected databases of
clinical, histological, and molec-
ular phenotype data of brain tu-
mour patients will be created.

It aims to develop new pattern
recognition methods for a dis-
tributed classification and anal-
ysis of HR MAS and microar-
ray data. They resort to feature
selection, clustering and classifi-
cation techniques, including sup-
port vector machines, mixture
models and Bayesian methods.

Table 2: Several current European research projects on cancer and their use of
ML techniques.

64


