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Abstract. A new approach for signal parametrization, which consists
of a specific regression model incorporating a discrete hidden logistic pro-
cess, is proposed. The model parameters are estimated by the maximum
likelihood method performed by a dedicated Expectation Maximization
(EM) algorithm. The parameters of the hidden logistic process, in the
inner loop of the EM algorithm, are estimated using a multi-class Itera-
tive Reweighted Least-Squares (IRLS) algorithm. An experimental study
using simulated and real data reveals good performances of the proposed
approach.

1 Introduction

In the context of the predictive maintenance of the French railway switches
(or points) which enable trains to be guided from one track to another at a
railway junction, we have been brought to parameterize switch operations signals
representing the electrical power consumed during a point operation (see figure
1). The final objective is to exploit these parameters for the identification of
incipient faults.
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Fig. 1: Example of the electrical power consumed during a point operation

The method we propose to characterize signals is based on a regression model
incorporating a discrete hidden process allowing abrupt or smooth switchings
between various regression models. This approach has a connection with the
switching regression model introduced by Quandt and Ramsey [9] and is very
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linked to the Mixture of Experts (ME) model introduced by Jordan and Jacobs
[7] by the using of a time-dependant logistic transition function. The ME model,
as discussed in [10], uses a conditional mixture modeling where the model pa-
rameters are estimated by the Expectation Maximization (EM) algorithm [1][3].
Other alternative approaches are based on Hidden Markov Models in a con-
text of regression [6]. A dedicated EM algorithm including a multi-class Itera-
tive Reweighted Least-Squares (IRLS) algorithm [8] is proposed to estimate the
model parameters.

Section 2 introduces the proposed model and section 3 describes the param-
eters estimation via the EM algorithm. The fourth section is devoted to the
experimental study using simulated data and real data.

2 Regression model with a hidden logistic process

2.1 The global regression model

We represent a signal by the random sequence x = (x1, ..., xn) of n real obser-
vations, where xi is observed at time ti. This sample is assumed to be gener-
ated by the following regression model with a discrete hidden logistic process
z = (z1, . . . , zn), where zi ∈ {1, . . . , K}:

xi = βT
zi

ri + εi ; i = 1, . . . , n (1)

In this model, βzi
is the (p + 1)-dimensional coefficients vector of a p degree

polynomial, ri = (1, ti, . . . , (ti)p)T is the time dependant (p + 1)-dimensional
covariate vector associated to the parameter βzi

and the εi are independent
random variables distributed according to a Gaussian distribution with zero
mean and variance σ2

zi
.

2.2 The hidden logistic process

This section defines the probability distribution of the process z = (z1, . . . , zn)
that allows the switching from one regression model to another. The pro-
posed hidden logistic process supposes that the variables zi, given the vector
t = (t1, . . . , tn), are generated independently according to the multinomial dis-
tribution M(1, πi1(w), . . . , πiK(w)), where

πik(w) = p(zi = k;w) =
exp (wT

k vi)∑K
�=1 exp (wT

� vi)
(2)

is the logistic transformation of a linear function of the time-dependant covariate
vi = (1, ti, . . . , (ti)q)T , wk = (wk0, . . . ,wkq)T is the (q + 1)-dimensional coeffi-
cients vector associated to the covariate vi and w = (w1, . . . ,wK). Thus, given
the vector t = (t1, . . . , tn), the distribution of z can be written as:

p(z;w) =
n∏

i=1

K∏
k=1

(
exp (wT

k vi)∑K
�=1 exp (wT

� vi)

)zik

, (3)
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where zik = 1 if zi = k i.e when xi is generated by the kth regression model, and
0 otherwise.

The pertinence of the logistic transformation in terms of flexibility of tran-
sition can be illustrated through simple examples with K = 2 components. As
it can be shown in figure 2 (left), the dimension q of wk controls the number of
changes in the temporal variation of πik(w). More particularly, if the goal is to
segment the signals into convex homogenous parts, the dimension q of wk must
be set to 1. The quality of transitions and the change time point are controlled
by the components values of the vector wk (see figures 2 (middle) and (right)).
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Fig. 2: Variation of πi1(w) over time for (left) different values of the dimension
q of wk, (middle) different values of λk = wk1 and (right) different values of
γk = wk0

wk1
with q = 1.

3 Parameter estimation

From the model given by equation (1), it can be proved that the random variable
xi is distributed according to the normal mixture density

p(xi;θ) =
K∑

k=1

πik(w)N (xi;βT
k ri, σ

2
k

)
, (4)

where θ = (w1, . . . ,wK ,β1, . . . ,βK , σ2
1 , . . . , σ2

K) is the parameter vector to be
estimated. The parameter θ is estimated by the maximum likelihood method.
As in the classic regression models we assume that, given t = (t1, . . . , tn), the εi

are independent. This also involves the independence of xi (i = 1, . . . , n). The
log-likelihood of θ is then written as:

L(θ;x) = log
n∏

i=1

p(xi;θ) =
n∑

i=1

log
K∑

k=1

πik(w)N (xi;βT
k ri, σ

2
k

)
(5)

Since the direct maximization of this likelihood is not straightforward, we use the
Expectation Maximization (EM) algorithm [1][3] to perform the maximization.

3.1 The dedicated EM algorithm

The proposed EM algorithm starts from an initial parameter θ(0) and alternates
the two following steps until convergence:
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E Step (Expectation): This step consists of computing the expectation of
the complete log-likelihood log p(x, z;θ), given the observations and the current
value θ(m) of the parameter θ (m being the current iteration):

Q(θ,θ(m)) = E[log p(x, z;θ)|x;θ(m)]

=
n∑

i=1

K∑
k=1

t
(m)
ik log(πik(w)N (xi;βT

k ri, σ
2
k)) , (6)

where t
(m)
ik = p(zik = 1|xi;θ(m)) = πik(w(m))N (xi;β

T (m)
k ri,σ

2(m)
k )

PK
�=1 πi�(w(m))N (xi;β

T (m)
� ri,σ

2(m)
� )

is the poste-

rior probability that xi originates from the kth regression model. As shown in
the expression of Q, this step simply requires the computation of t

(m)
ik .

M step (Maximization): In this step, the value of the parameter θ is up-
dated by computing the parameter θ(m+1) maximizing the expectation Q with
respect to θ. The maximization of Q can be performed by separately maximizing

Q1(w) =
nX

i=1

KX

k=1

t
(m)
ik log πik(w) and Q2(βk, σ2

k) =
nX

i=1

t
(m)
ik logN (xi; β

T
k ri, σ

2
k) (7)

The maximization of Q1 with respect to w is a multinomial logistic regression
problem weighted by the t

(m)
ik . We use a multi-class Iterative Reweighted Least

Squares (IRLS) algorithm [8][2][5] to solve it. Maximizing Q2 with respect to
(βk, σ2

k) consists of analytically solving a weighted least-squares problem.

3.2 Denoising and segmenting a signal

In addition to providing a signal parametrization, the proposed approach can be
used to denoise and segment signals. The denoised signal can be approximated
by the expectation

E(xi; θ̂) =
∫

IR

xip(xi; θ̂)dxi =
K∑

k=1

πik(ŵ)β̂
T

k ri , ∀i = 1, . . . , n (8)

where θ̂ = (ŵ, β̂1, . . . , β̂K , σ̂2
1 , . . . , σ̂2

K) is the parameters vector obtained at the
convergence of the algorithm. On the other hand, a signal segmentation can also
be deduced by computing the estimated label ẑi of xi: ẑi = arg max

1≤k≤K
πik(ŵ).

4 Experiments

This section is devoted to the evaluation of the proposed algorithm using sim-
ulated and real data sets. Two evaluation criteria are used in the simulations:
the misclassification rate between the simulated partition and the estimated
partition and the euclidian distance between the denoised simulated signal and
the estimated denoised signal normalized by the sample size n. The proposed
approach is compared to the piecewise regression approach [11] .
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4.1 Simulated signals

Each signal is generated according to the regression model with a hidden logistic
process defined by eq (1). The number of states of the hidden variable is fixed
to K = 3 and the order of regression is set to p = 2. The order of the logistic
regression is fixed to q = 1 what guarantees a segmentation into convex intervals.
We consider that all signals are observed over 5 seconds. For each size n we
generate 20 samples. The values of assessment criteria are averaged over the
20 samples. Figure 3 (left) shows the misclassification rate obtained by the two
approaches in relation to the sample size n. It can be observed that the proposed
approach is more stable for a few number of observations. Figure 3 (right) shows
the results obtained by the two approaches in terms of signal denoising. It can be
observed that the proposed approach provides a more accurate denoising of the
signal compared to the piecewise regression approach. For the proposed model,
the optimal values of (K, p) has also been estimated by computing the Bayesian
Information Criterion (BIC) [4] for k varying from 2 to Kmax = 8 and p varying
from 0 to pmax = 6. The simulated model, corresponding to K = 3 and p = 2,
has been chosen with the maximum percentage of 85%.
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Fig. 3: Average values of misclassification rate (left) and error of denoising
(right) in relation to the sample size n obtained with the proposed approach
(triangle) and the piecewise regression approach (circle).

4.2 Real signals

This section presents the results obtained by the proposed model for signals of
switch points operations. One situation corresponding to a signal with a criti-
cal defect is presented. The number of the regressive components is chosen in
accordance with the number of the electromechanical phases of a switch points
operation (K = 5). The value of q has been set to 1, what guarantees a seg-
mentation into convex intervals, and the degree of the polynomial regression has
been set to 3 which is adapted to the different regimes in the signals. Figure 4
(left) shows the original signal and the denoised signal (given by equation (8)).
Figure 4 (middle) shows the variation of the proportions πik over time. It can
be observed that these probabilities are very closed to 1 when the kth regressive
model seems to be the most faithful to the original signal. The five regressive
components involved in the signal are shown in figure 4 (right).
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Fig. 4: Results obtained for a signal with defect

5 Conclusion

In this paper a new approach for signals parametrization, in the context of
the railway switch mechanism monitoring, has been proposed. This approach
is based on a regression model incorporating a discrete hidden logistic process.
The logistic probability function, used for the hidden variables, allows for smooth
or abrupt switchings between polynomial regressive components over time. In
addition to signals parametrization, an accurate denoising and segmentation of
signals can be derived from the proposed model.

References

[1] A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum likelihood from incomplete data
via the EM algorithm, Journal of the Royal Statistical Society, B, 39(1): 1-38, 1977.

[2] B. Krishnapuram, L. Carin, M.A.T. Figueiredo and A.J. Hartemink, Sparse multinomial
logistic regression: fast algorithms and generalization bounds, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 27(6): 957-968, June 2005.

[3] G. J. McLachlan and T. Krishnan, The EM algorithm and extensions, Wiley series in
probability and statistics, New York, 1997.

[4] G. Schwarz, Estimating the dimension of a model, Annals of Statistics, 6: 461-464, 1978.

[5] K. Chen, L. Xu and H. Chi, Improved learning algorithms for Mixture of Experts in multi-
class classification, IEEE Transactions on Neural Networks, 12(9): 1229-1252, November
1999.

[6] M. Fridman, Hidden Markov Model Regression, Technical Report, Institute of mathe-
matics, University of Minnesota, December 1993.

[7] M. I. Jordan and R. A. Jacobs, Hierarchical Mixtures of Experts and the EM algorithm,
Neural Computation, 6: 181-214, 1994.

[8] P. Green. Iteratively Reweighted Least Squares for Maximum Likelihood Estimation, and
some robust and resistant alternatives, Journal of the Royal Statistical Society, B, 46(2):
149-192, 1984.

[9] R. E. Quandt and and J. B. Ramsey, Estimating mixtures of normal distributions and
switching regressions, Journal of the American Statistical Association, 73(364): 730-752,
1978.

[10] S. R. Waterhouse, Classification and regression using Mixtures of Experts, PhD thesis,
Department of Engineering, Cambridge University, 1997.

[11] V. E. McGee and W. T. Carleton, Piecewise regression, Journal of the American Statis-
tical Association, 65, 1109-1124, 1970.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.




