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Abstract. In recent years nonlinear dimensionality reduction has fre-
quently been suggested for the modelling of high-dimensional motion data.
While it is intuitively plausible to use dimensionality reduction to recover
low dimensional manifolds which compactly represent a given set of move-
ments, there is a lack of critical investigation into the quality of resulting
representations, in particular with respect to generalisability. Furthermore
it is unclear how consistently particular methods can achieve good results.
Here we use a set of robotic motion data for which we know the ground
truth to evaluate a range of nonlinear dimensionality reduction methods
with respect to the quality of motion interpolation. We show that re-
sults are extremely sensitive to parameter settings and data set used, but
that dimensionality reduction can potentially improve the quality of linear
motion interpolation, in particular in the presence of noise.

1 Introduction

Good representations of motions are the basis for many applications in ani-
mation, robotics and computer vision. Most of the time raw motion data is
collected as a discrete series of poses where each pose consists of a set of joint
angles (typical for robotic data) or a set of link rotations (typical for human
motion capture data). These representations are very general and well suited to
represent a recorded set of motions, but have disadvantages for motion gener-
ation. In particular, they allow to represent many poses which are unnatural,
physically implausible, or just unrelated to the motions which are supposed to
be modelled. These problems become more severe with increasing degrees of
freedom (DoF) of the body and therefore dimensionality of the representation.

Consequently, many applications working with observed motions use dimen-
sionality reduction to find a compact representation which constrains generated
poses to be close to the observed data, therefore restrict the space of valid poses
and simplify subsequent processing. This has been suggested, for example, for
inverse kinematics during keyframing of animations [1], for tracking of human
postures from video [2], or for generation of new human [3] or stable robotic
movements [4] from motion capture data, just to name a few.

Some applications would not be computationally feasible without dimen-
sionality reduction, for others dimensionality reduction is intended to improve
performance in terms of accuracy or efficiency. Of course new methods are pub-
lished together with a claim for such performance improvements, but often i)
evaluations are only done on particular, restricted data sets, ii) it is not clear
whether the performance improvement is due to the dimensionality reduction or
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(a) DLR arm poses with fixed end-point but varying α (2.2, 2.8, 3.4, 4, 4.6, 5.2)
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(b) 36 trajectories of position-set in joints 1 to 7 (in this order). x: time, y: joint angle

Fig. 1: Visualisation of robot (a) and examples of joint space trajectories (b).

another part of the suggested system, or iii) no quantitative evaluation is done at
all. The domain of motion synthesis from human motion capture is particularly
prone to insufficient evaluations, because we do not know the ground truth in
these applications. Therefore we can not conclusively say when dimensionality
reduced motion representations are beneficial and when they are, why this is the
case.

Here we employ robotic motion data which we can control precisely and
know ground truth of to test several dimensionality reduction techniques for their
ability to reconstruct the underlying principles which have been used to generate
the data. If dimensionality reduction succeeds, it is very easy to generate new
motions which follow these principles. Consequently we use interpolation of
motions to evaluate dimensionality reduction results which additionally allows
us to compare to the case without dimensionality reduction.

2 Methods

In this section we describe the robotic motion data and what we mean by under-
lying principles, explain our criteria for evaluation and present a concise overview
of the dimensionality reduction techniques that we test.

2.1 Robotic Motion Data

We use the kinematics of the 7 DoF DLR Light-Weight Robot III arm for our
experiments. Setting the position and orientation of its end-point constrains 6 of
the 7 DoF. The 7th DoF is resolved as described in [5] by setting a “redundancy
angle” α (see Fig. 1(a) for visualisation). For our first data set (α-set) we
define a single, straight line, upward movement of the arm end-point with fixed
orientation and let α vary in steps of 0.1 from 2.2 to 5.7 yielding 36 different arm
movements. For the second data set (position-set) we fix α = 4.2 and vary the
position of the upward movement along a line from [0.48,−0.41] to [0.48, 0.49]
in the robot’s base plane such that we also obtain 36 different arm movements
(see Fig. 1(b)). Within each data set any pose can be uniquely identified with
2 parameters: the height of the end-point and either α or the position along
the line (y-value of base plane). Furthermore all poses are smoothly connected
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along those dimensions. Therefore these data sets are inherently 2 dimensional
and ideally dimensionality reduction would align a 2 dimensional latent space
along these directions.

We evaluate interpolation quality of whole trajectories for increasing dis-
tances between the trajectories used for interpolation. This is done by increas-
ing the number of trajectories left out for evaluation. We start by leaving out
every 2nd trajectory as targets for interpolation and end by leaving out all 34
trajectories between the 1st and last trajectories in the data set. We call the
number of left out trajectories the “interpolation width”. A generated trajectory
is evaluated against its original with respect to the average root mean squared
error (RMSE) between corresponding poses. This can be computed for the joints
(in joint space) and for the position of the robot end-point (in task space). Fur-
thermore we define a trajectory to be successfully interpolated, if the task space
RMSE between interpolated and original poses is smaller than 0.0032 and the
RMSE between corresponding α-values and its standard deviation is smaller
than 0.01. These criteria ensure that the trajectory exhibits the correct values
along the principled directions identified above.

2.2 Dimensionality Reduction Methods

Our focus here is on nonlinear dimensionality reduction methods which provide
us with a generative mapping y = f(x) from latent to observed space enabling
us to generate new motions from the low-dimensional latent space. In our case
f ∈ R

2 → R
7. These methods are usually defined in the form of nonpara-

metric, probabilistic models and f implements general assumptions about the
smoothness of the data and the type of noise.

An early proposal is the generative topographic mapping (GTM) [6]. In
the GTM f is a generalised linear model with Gaussians as basis functions and
centres of the Gaussians placed on a fixed and regular grid. The weights of the
generalised linear model and noise variance are learned with the EM algorithm
using an approximation based on sampling. The resulting latent space and
associated mapping depend on the choice of basis functions (positions, widths)
and initialisation of parameters.

The Gaussian Process Latent Variable Model (GPLVM) [7] has got a lot of
attention recently, because of its power, generality and the ease with which it
can be extended. In the GPLVM f consists of Gaussian Processes (GPs) which
are learned via gradient based maximum likelihood optimisation of the latent
points associated with the observations and the parameters of the GP covariance
functions. Results depend on the choice of covariance function and initialisation
of the optimisation. Additionally you have to choose from the many variants and
extensions of the GPLVM. The most prominent ones are the back-constrained
GPLVM (BC-GPLVM) [8] and the Gaussian Process Dynamical Model (GPDM)
[3]. The BC-GPLVM adds additional smoothness constraints to the dimensional-
ity reduction mapping and the GPDM adds a nonlinear, autoregressive dynamics
model to the latent space. For both additional model selection choices have to
be made.

Unsupervised Kernel Regression (UKR) [9] is the unsupervised counterpart
to the Nadaraya-Watson kernel regression estimator. Consequently f is a con-
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Fig. 2: Ratio of successful interpolations for the two data sets. x-axis: inter-
polation width, y-axis: dimensionality reduction method. Values range from 0
(white, no successful interpolations) to 1 (black, all successful). For interpola-
tion widths > 20 (not shown) also all ratios = 0. First line: naive, joint space
interpolation. For GPLVM variants and UKR 6 different initialisations of latent
points are tested (shown in this order): ad-hoc parallel lines, random, PCA,
Isomap, LLE, Laplacian Eigenmaps. Last column: p-value (for p < 0.01 we
accept with high confidence that dimensionality reduction is advantageous).

vex, weighted sum of the data points, y. The weights correspond to normalised
distances in some feature space which is defined by the kernel function. The
latent points, x, are found by gradient based optimisation of the reconstruction
error and leave-one-out cross-validation can efficiently be used to estimate pa-
rameters of the model. Results mainly depend on the initialisation of the latent
points.

3 Results

Our analysis is centred around the question: “Does Dimensionality Reduction
Improve the Quality of Motion Interpolation?” Consequently, we evaluate the
interpolation quality directly in joint space and compare it to interpolation in
latent spaces resulting from dimensionality reduction. More specifically we in-
terpolate in the latent space, map to joint space using the generating function,
f , of the dimensionality reduction method and compare the resulting joint space
trajectories with the originals that have been left out when doing the dimen-
sionality reduction. The interpolation itself is done pose by pose for any desired
trajectory from corresponding poses of the given trajectories (the naive inter-
polation is done in the same way in joint space rather than in latent space).
Either linear or spline interpolation is used. In addition to the investigation into
quality improvement, these experiments are designed to give an insight into how
variable dimensionality reduction results are for different choices of data sets
and parameter settings.

In Fig. 2 we see that overall results are roughly similar for the two data sets.
First we note that PCA has no successful interpolations at all even though the 2
dimensional PCA space already captures 97% or 94% of the data variance. Also
UKR and GTM fail to produce successful interpolations. This might not neces-
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Fig. 3: Ratio of successful spline interpolations for noisy data sets. Gaussian
noise with standard deviation equal to 1/100 of the data standard deviation.
Interpretation as in Fig. 2

sarily be a problem of the latent representation, but could be due to the weakness
of the generative mapping. For the GPLVM approaches we see that results are
highly dependent on the chosen initialisation and data set. PCA initialisation,
which is standard in the literature, is consistently outperformed by initialisa-
tion with ad-hoc, parallel lines. Note that no dimensionality reduction method
significantly outperforms spline interpolation in joint space (see Fig. 2(c), Fig.
3(a)). This is because in the given setting this form of nonlinear interpolation
already performs close to the limit of what can be achieved. The lowest p-value
of 0.05 (see Fig. 2 for explanation) is achieved for linear interpolation on the
α-set with the standard GPLVM and ad-hoc lines initialisation. This finding
suggests that dimensionality reduction can simplify motion interpolation with a
suitable choice of parameters.

These experiments help to understand whether and how well dimensional-
ity reduction methods can uncover principles underlying movement data, but,
because the data is noise free, they neglect an important feature of these meth-
ods. Fig. 3 shows results for increasing levels of noise in the data (added as
a fraction of the standard deviation of the data in each joint). In the pres-
ence of noise joint space interpolation produces fewer successful interpolations,
because the variance introduced by the noise is sufficient to increase the pose
errors such that interpolated trajectories in joint space do not fulfil the success
criteria anymore even though the general shape and position of the interpolated
trajectories roughly fit the data. The GPLVM approaches, on the other hand,
smooth out some of the noise variance and therefore maintain their interpola-
tion quality to a greater extent. Furthermore, the BC-GPLVM only produces
successful interpolations in the presence of noise, because the noise prevents pre-
mature convergence of the BC-GPLVM optimisation that is occurring otherwise.
Experiments with larger noise level (not shown) suggest that the GPDM is the
most robust of the tested methods. On the one hand, this is no surprise, because
it is the only tested method that models temporal coherence of the data. On the
other hand, it does not perform best in all cases indicating either a discrepancy
between model and data or optimisation problems.
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4 Conclusion

Nonlinear dimensionality reduction is an ill-posed problem: given a high-
dimensional data set there are infinitely many latent spaces and correspond-
ing mappings that could have generated the data. To overcome this problem
dimensionality reduction methods usually make assumptions about the smooth-
ness of the mappings and the kind of noise present in the data. Our experiments
show that the assumptions made by standard methods do not in general lead
to successful reconstructions of principles underlying movement data unless the
available data is very densely sampled.

It is not always necessary to find the exactly right latent space when the
dimensionality reduction is embedded in a larger application to achieve per-
formance improvements. For motion synthesis by interpolation, an important
application for human movement data, our results suggest that nonlinear di-
mensionality reduction can have a positive effect on interpolation quality, but
methods and parameters need to be chosen carefully to reach the performance
level of pure spline interpolation. In our experiments an ad-hoc, parallel lines
initialisation works surprisingly well, but for none of the methods performance
guarantees can be given for other data sets. We also show here that dimension-
ality reduction can produce more robust results in the presence of noise.

Finally, given our results we suggest to incorporate as much prior information
about the data at hand as possible into the dimensionality reduction process to
constrain the optimisation problem and make dimensionality reduction results
more consistent.
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