
Studies on Reservoir Initialization and Dynamics
Shaping in Echo State Networks

Joschka Boedecker1, Oliver Obst2, N. Michael Mayer3, and Minoru Asada1,4

1- Dep. of Adaptive Machine Systems, Osaka University, Suita, Osaka, Japan

2- CSIRO ICT Centre, Autonomous Systems Laboratory
Locked Bag 17, North Ryde, NSW 1670 - Australia

3- Department of Electrical Engineering, National Chung Cheng University
Chia-Yi, Taiwan, R.O.C.

4- JST ERATO Asada Synergistic Intelligence Project, Suita, Osaka, Japan

Abstract. The fixed random connectivity of networks in reservoir com-
puting leads to significant variation in performance. Only few problem
specific optimization procedures are known to date. We study a general
initialization method using permutation matrices and derive a new un-
supervised learning rule based on intrinsic plasticity (IP) for echo state
networks. Using three different benchmarks, we show that networks with
permutation matrices for the reservoir connectivity have much longer mem-
ory than the other methods, but are also able to perform highly non-linear
mappings. We also show that IP based on sigmoid transfer functions is
limited concerning the output distributions that can be achieved.

1 Introduction

In reservoir computing, a network with fixed, recurrent connections is used to
solve the problem of slow convergence of traditional recurrent neural network
learning approaches. Only connections to the output units are trained. Echo
state networks (ESN) are one particular instance of reservoir computing. The
reservoir of an ESN is typically created using random connection weights, where
one condition has to be met: Connections have to be weak enough so that the
states of two equally constructed ESN converge to each other for long enough
input independent of their starting states. ESN learning is efficient, because only
output weights are trained using a linear regression, but its performance is also
dependent on the fixed random connections of the reservoir. Thus, the quality
varies between different random initializations, and only few problem specific
optimization methods have been presented yet (e.g. [1, 2, 3]).

We study the effect of approaches aiming to reduce this dependency by either
initializing the reservoir not entirely at random [4, 5], or by adapting it online
using intrinsic plasticity (IP) [6]. These methods have an effect on prediction
quality and short-term memory capacity of ESN. The reservoir initialization
method is based on the idea to optimally exploit the high dimensionality of
the reservoir, while methods based on IP aim to adapt the reservoir for a high
entropy of codes (Sect. 2). Furthermore, we investigate an IP adaptation for
high sparsity of codes. All methods are experimentally evaluated (Sect. 3) and
the results are discussed in Sect. 4. Finally, Sect. 5 concludes.
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2 Reservoir initialization and adaptation

We briefly review a reservoir initialization method and revisit IP optimization
methods, which have been used to maximize the entropy of reservoir neuron
outputs [1, 2]. Subsequently, we develop an IP rule with the goal to achieve
sparser codes, as these have been shown to improve information processing [7].

2.1 Reservoirs based on permutation matrices

Orthogonal networks [4] have an orthogonal reservoir matrix W (i.e. WWT = 1)
and linear activation functions. These networks are inspired by a distributed
version of a delay line, where input values are embedded in distinct orthogonal
directions, leading to high memory capacity [4]. Permutation matrices, as used
in [5], consist of randomly permuted diagonal matrices and are a special case of
orthogonal networks. Here, and in [5], the hyperbolic tangent (tanh) activation
function was used, in order to facilitate non-linear tasks beyond memorization.

2.2 IP learning and a rule for a Laplace output distribution

IP learning is based on the idea of adapting gain and bias of the transfer function
in order to change the output distribution of a neuron. It has been used with
exponential [1] and Gaussian [2] distributions. In both cases, IP led to an entropy
maximization for the reservoir neuron outputs and improved the quality of the
information encoding in the tested reservoirs. A Laplace distribution would lead
to sparser codes than the Gaussian, and our hypothesis is that enough entropy
would be preserved for a good input signal approximation. Researching Laplace
output distributions was also suggested in [2] for similar reasons. Here, we derive
an IP learning rule for this distribution to test our hypothesis:

Our neurons’ transfer function are defined as y = f(x) = tanh(x). The
reservoir node activation vector x here is given as x(t) = diag(a)Wres

resx(t− 1)+
diag(a)Wres

inpu(t) + c with a being the gain vector, and c being the bias vector.
The Laplace distribution is defined as f(x | μ, b) = 1

2b exp(− |x−µ|
b ), b �= 0.

Let p̃(y) denote the sampled output distribution of a reservoir neuron and let
the desired output distribution be p(y), thus p(y) = f(y | μ, b). In the learning
process, we try to minimize the difference between p̃(y) and p(y) which can be
measured with the Kullback-Leibler divergence DKL. Thus, we try to minimize:

DKL =
∫

p̃(y) log

(
p̃(y)

1
2b exp(− |y−µ|

b )

)
dy

Analogous to the calculations in [6, 2], we derive the following learning rules for
stochastic gradient descent with learning rate η:

Δc = −η

(
2y +

y(1 − y2 + μy) − μ

b|y − μ|
)

. y �= μ

Δa = −η(−1
a
) − η

(
2xy +

yx(1 − y2 + μy) − μx

b|y − μ|
)

=
η

a
+ Δcx. y �= μ
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3 Experimental setup and results

In order to compare the different reservoir shaping and initialization methods, we
tested them on three different standard benchmarks. The first set of experiments
evaluated the short-term memory capacity (MC). In addition, we looked at one-
step prediction performance on the 30th order NARMA and Mackey-Glass time-
series. These tasks cover a reasonably wide spectrum of tests for different useful
properties of reservoirs and are widely used in the literature (e.g. [8, 2, 3, 9, 1]).

For all of the experiments, we used ESN with 1 input and 100 reservoir
nodes. The number of output nodes was 1 for the NARMA and Mackey-Glass
tasks, and 200 for the MC evaluation. In the latter, the 200 output nodes were
trained on the input signal delayed by k steps (k = 1 . . . 200). The input weights
were always initialized with values from a uniform random distribution in the
range [−0.1; 0.1]. The output weights for each output node were computed
offline using the pseudoinverse of a matrix X composed of the reservoir node
activations over the last 1000 of a total of 2000 steps as columns, and the input
signal. In the case of the MC task, the delayed input was used as follows:
Wout,k

res = (u1001−k ...2000−k ∗ X†)T with X† denoting the pseudoinverse, and
k = 1 . . . 200.

We tested ESN with four different conditions for the connectivity matrix
of the reservoir. In condition RND, the reservoir matrix was initialized with
uniform random values between [−1; 1]. Condition PMT tested a permutation
matrix for the reservoir connectivity. Finally, we used IP optimization with a
Gaussian distribution (cf. [2]) in IPGAUSS and a Laplace distribution (as
described in Sect. 2.2) in IPLAP. For IPGAUSS, parameters μ and σ of the
Gaussian were set to 0.0 and 0.09, respectively. For IPLAP, parameters μ and
b were set to 0.0 and 0.08 (values empirically determined in both cases). For
both IP methods the reservoir was pre-trained for 100000 steps with a learning
rate of 0.0005. In all conditions, the spectral radius of the reservoir connectivity
matrix was scaled to 0.95 (prior to pre-training in case of IP).

The input for the MC task was random values sampled from a uniform ran-
dom distribution in the range [−0.8; 0.8]. For the NARMA task, the input time
series was calculated as:

y(t + 1) = 0.2y(t) + 0.004y(t)
29∑

i=0

y(t − i) + 1.5x(t − 29)x(t) + 0.001,

with x(t) being values sampled from a uniform random distribution between
[0, 0.5]. The Mackey-Glass time-series for the last experiment was computed by
integrating the system

ẏ = 0.2y(t− τ)/(1 + y(t − τ)10) − 0.1y(t),

from time step t to t + 1. The τ parameter was set to 17 to get a mildly chaotic
behavior. Different input time-series were used for training the output weights
and for testing in all cases. The input length was always 2000 steps. The first
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Table 1: Average memory capacity and NRMSE for the NARMA and Mackey-
Glass prediction tasks in the four different conditions (averaged over 30 simula-
tion runs), standard dev. in parenthesis. Note that the errors for NARMA are
scaled by a factor for 10−2 and the ones for Mackey-Glass by a factor of 10−5.

PMT RND IPGAUSS IPLAP

Memory Capacity 62.39 (4.22) 31.11 (2.47) 32.64 (3.77) 32.70 (2.35)

NRMSENARMA 45.42 (5.47) 72.62 (4.3) 67.22 (3.53) 67.69 (4.18)

NRMSEMackey−Glass 33.18 (3.81) 24.30 (2.38) 44.36 (3.81) 40.67 (15.84)

1000 steps of the reservoir node activations were discarded to get rid of transient
states to due random initialization before calculating the output weights and the
test error.

To evaluate the short-term memory capacity of the different networks, we
computed the k-delay memory capacity (MCk) defined by Jaeger in [8] as

MCk = cov2(ut−k ,ot)/(σ2(ut−k )σ2(ot))

The actual short-term memory capacity of the network is defined as MC =∑∞
k=1 MCk, but since we can only use a finite number of output nodes, we

limited their number to 200 which is sufficient to see a significant drop-off in
performance for the networks in all of the tested conditions.

The evaluation for the NARMA and Mackey-Glass prediction tasks was done
using the normalized root mean squared error measure, defined as:

NRMSE =
√
〈(ỹ(t) − y(t))2〉t/〈(y(t) − 〈y(t)〉t)2〉t,

where ỹ(t) is the sampled output and y(t) is the desired output.
The results of the experiments are given in Table 1, averaged over 30 simu-

lation runs for each of the four conditions. The networks in the PMT condition
show a memory capacity which is essentially double that of the other conditions,
while networks pre-trained with IPGAUSS and IPLAP have very similar val-
ues and show a slight increase compared to condition RND. The results for the
NARMA one-step prediction look similar in that the PMT networks perform
significantly better than the other tested conditions. The NRMSE for IPLAP
and IPGAUSS is very similar again, and slightly lower than the RND one. For
the Mackey-Glass one-step prediction, the performance of the RND networks is
better than the other ones. The PMT networks perform slightly better on this
task than the pre-trained ones in IPGAUSS and IPLAP.

4 Discussion

For the short-term memory capacity task, the networks in PMT perform much
better than the others. This could be expected from the motivation for these
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networks presented in Section 2.1. They also outperform the other methods on
the highly non-linear NARMA task which is less obvious. The NARMA task
needs long memory which the orthogonal reservoirs in PMT are able to provide,
but one might suspect that the specific connectivity would not be able to perform
the kind of non-linear mappings that the task requires. The results show that
this is not the case. The Mackey-Glass prediction task requires shorter time
constants and less memory than the other two tasks. In this case, the RND
networks perform best. The PMT networks have the same spectral radius as the
ones in RND, however, the longer memory in the PMT case seems to interfere
with influence of the input. The IP adaptation has the tendency to increase the
spectral radius of the reservoir connectivity matrix, resulting in even longer time
constants which hurts performance for the prediction.

4.1 IP revisited

A closer investigation of the almost identical performance of both IP methods
revealed that IPLAP also generated normally distributed output, very similar to
IPGAUSS. To better understand the effect of the different IP rules, we used IP
to approximate the Laplace, the Gaussian (both with a tanh activation function),
and the exponential distribution (fermi activation function), respectively, with
a single feedforward unit and uniformly distributed input. As expected, the IP
learning rule can successfully generate exponentially distributed output values.
IP fails, however, to generate output distributions that resemble the Gaussian or
the Laplace (Fig. 1, b–d). This seems surprising in particular for the Gaussian, as
IP has successfully been used to shape the output distribution of a reservoir [2].
From Fig. 1 a, it becomes clear why an approximation of some distributions
is more difficult than others: given a uniform input distribution and a sigmoid
transfer function, IP learning selects a slice from an output distribution that
peaks towards either end of the input range, but never in the center. The output
of an IP trained self-recurrent unit gives an intuition why it is possible to achieve
a Gaussian output distribution in a reservoir (Fig. 1, e). From the central limit
theorem it follows that the sum of many i.i.d. random variables approximates
a Gaussian. Even though in case of a recurrent reservoir not all inputs to a
unit will be i.i.d., IP has to make input distributions only similar to each other
to approximate a normal distribution in the output. For uniform input and a
single unit without recurrence, the best IP can do is to choose the linear part of
the activation function, so that the output is also uniformly distributed. With
self-recurrent connections, this leads to initially uniform distributions added up.
The resulting output, and eventually the whole reservoir become more and more
Gaussian. A consequence of our result is that IP with sigmoid transfer functions
cannot be generalized to arbitrary distributions.

5 Conclusion

We studied different initialization and dynamics shaping methods for reservoirs
of ESN. One of our findings is that networks with a reservoir connectivity based
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Fig. 1: (a) Uniform input and a tanh transfer function lead to the output dis-
tribution in the histogram. IP selects a slice of this distribution, as illustrated
by the vertical lines. Adapting gain and bias changes width and position of the
slice. (b–d): Effect of IP learning on a single feedforward neuron. (e) shows the
effect of IPGAUSS for a single self-recurrent unit.

on permutation matrices are superior in tasks requiring long short-term memory
capacity, but are also able to perform complex non-linear mappings. Further-
more, we derived a new learning rule for IP based reservoir adaptation, and
found a limitation of this approach that prevents generalization to arbitrary
distributions if sigmoid transfer functions are used.

Acknowledgements This work was partially supported by a JSPS Fellowship for
Young Researchers, and by the JST ERATO Synergistic Intelligence Project. We
thank the anonymous reviewers for their very constructive feedback.

References

[1] J. J. Steil. Online reservoir adaptation by intrinsic plasticity for backpropagation-
decorrelation and echo state learning. Neural Networks, 20(3):353–364, April 2007.

[2] B. Schrauwen, M. Wardermann, D. Verstraeten, J. J. Steil, and D. Stroobandt. Improving
reservoirs using intrinsic plasticity. Neurocomputing, 71(7-9):1159–1171, 2008.

[3] A. A. Rad, M. Jalili, and M. Hasler. Reservoir optimization in recurrent neural networks
using kronecker kernels. IEEE Int. Symp. on Circuits and Systems, pages 868–871, 2008.

[4] O. L. White, D. D. Lee, and H. Sompolinsky. Short-term memory in orthogonal neural
networks. Physical Review Letters, 92(14):148102.1–148102.4, 2004.
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