
Reservoir computing for static pattern
recognition

Mark J. Embrechts1 and Lúıs A. Alexandre2 and Jonathan D. Linton3 ∗

1 - Rensselaer Polytechnic Institute - Decision Sciences and Engineering Systems
CII 5219, Troy, NY 12180 - USA

2 - University of Beira Interior - Department of Informatics and
Instituto de Telecomunicações, Covilhã - Portugal

3 - University of Ottawa - Telfer School of Management
Ottawa - Canada

Abstract. This paper introduces reservoir computing for static pattern
recognition. Reservoir computing networks are neural networks with a
sparsely connected recurrent hidden layer (or reservoir) of neurons. The
weights from the inputs to the reservoir and the reservoir weights are ran-
domly selected. The weights of the second layer are determined with a
linear partial least squares solver. The outputs of the reservoir layer can
be considered to be an unsupervised data transformation. This stage has
a brain-like plausibility. This paper shows that by letting the dynamics of
the reservoir evolve to a stable solution, and then applying a sigmoid trans-
fer function, reservoir computing can be applied as a robust and highly
accurate pattern classifier. Reservoir computing is applied to 16 difficult
multi-class classification benchmark cases, and compared with the best re-
sults of state-of the art neural network classification methods with entropic
error criteria.

1 Introduction to reservoir computing

Reservoir computing [1-2] refers to a class of recurrent artificial neural networks
(RANNs) consisting of liquid state machines (LSM) [3-4], echo state networks
(ESN) [5], back-propagation decorrelation networks (BPDC) [6]. Reservoir com-
puting can be based on either McCullough-Pitts neurons or spiking neurons. A
simple layout for a reservoir computing based artificial neural network for static
pattern recognition has a conventional fan-out input layer, a hidden layer with
sparse recurrent connections and a linear output layer (with no activation func-
tion) as depicted in Figure 1. Contrary to the more traditional feed-forward or
recurrent neural networks, the input weights and the feedback reservoir weights
are randomly assigned. For static pattern recognition this random weight as-
signment is subject to the condition that the reservoir dynamics converge: i.e.,

∗Support for this research has been provided by the Canadian Natural Sciences
and Engineering Research Council. We acknowledge the support of the Portuguese
FCT - Fundação para a Ciência e Tecnologia, POS Conhecimento and FEDER (project
POSC/EIA/56918/2004).

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

the complex eigenvalues of the reservoir layer have to fall within the unit cir-
cle of the complex plane. Once a good reservoir is found for the hidden layer,
the same reservoir weights can be used for different classification problems: i.e.,
the reservoir weights are conditioned rather than trained. This paper proposes
a novel way for reservoir computing for static pattern recognition in the sense
that the outputs of the reservoir layer are determined by applying a sigmoid-like
activation function after the reservoir dynamics have stabilized.

This paper is organized as follows: section 2 highlights the details of reser-
voir computing for static pattern recognition. Section 3 compares the results of
reservoir computing on 16 challenging benchmark classification problems with
the results obtained with neural networks trained with the back-propagation al-
gorithm. Section 4 presents preliminary conclusions and remarks on the promise
of reservoir computing for static pattern recognition problems.

2 Reservoir computing for static pattern recognition

Prior applications of reservoir computing were mostly limited to time series
analysis applications. Reservoir computing for static pattern recognition exploits
the dynamics of the reservoir layer. The activation function is applied only
after the reservoir dynamics have stabilized. Note that so far the outputs from
the reservoir layer are determined by an unsupervised procedure and there is
no need to apply back-propagation or back-propagation through time for the
hidden credit assignment problem: i.e., the reservoir can be considered as a data
transform stage, and machine learning will be applied only to the transformed
data. Note also that because of that reason, this paper does not consider any
connections between the input layer and the output layer (or vice versa).

Only the weights of the output layer are determined by a supervised process.
Because the output layer has no activation function, these weights can be de-
termined with a simple linear regression model or by applying alternate linear
techniques such as ridge regression [7], principal component regression, and par-
tial least squares regression [8]. The reservoir would typically have a few hundred
neurons and the interconnections between the feedback reservoir units would be
sparse (e.g., less than 10 percent connections). The weights of the input layer
and the reservoir connections are selected from a uniform random distribution
between zero and a maximum boundary. This maximum boundary is chosen
such that oscillations after the reservoir layer stabilize. The main advantage of
reservoir computing is that because the reservoir needs a robust conditioning
of the weights, rather than a highly iterative training of the weights, reservoir
computing does not require extensive parameter tuning, and can therefore in
principle learn from fewer (or hopefully just from a few) patterns. Reservoir
computing, at least as far as the input and reservoir weights are concerned, can
therefore be considered as a brain-like plausible method: i.e. it is possible or
plausible that similar processes take place in the brain. This last statement
has to be considered in the context of the back-propagation algorithm [9]. Be-
cause the back-propagation algorithm is highly supervised and not local, it is

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

Fig. 1: Simple schematic of a reservoir-computing based artificial neural network
for static pattern recognition (with bias weights in the input layer). Note that
the transfer function in the reservoir layer is applied after the reservoir outputs
have converged to stable values.

highly unlikely that the brain employs a method similar to the back-propagation
algorithm for pattern recognition.

3 Benchmark experiments

3.1 Multi-class classification datasets

Initial experiments of static pattern recognition with reservoir computing are
extremely encouraging for 16 challenging benchmark classification problems.
These mostly nonlinear and multi-class classification benchmark problems were
selected because they were explored at length in the dissertation of Luis da
Silva [10] with extensive experiments comparing neural networks trained with
the traditional back-propagation algorithm and improved neural networks us-
ing the back-propagation algorithm with an entropy based cost function. The
results for these same problems were furthermore found to be comparable with
those obtained by applying kernel partial least squares methods [11] and support
vector machines [12], as reported in [13]. Table 1 presents a comparison between
reservoir computing for static pattern recognition and the best results reported
in [10] for the same datasets.

3.2 Data preprocessing and reservoir conditioning

Before showing data to the reservoir layer the variables are standardized (i.e.,
each variable is centered by subtracting the average column value for each vari-
able and dividing by the standard deviation). Similarly, for the second phase of
the network, the reservoir outputs are once more standardized. Note that for

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

the PLS classification task the targets are standardized as well. The reservoir
computing part assumes a reservoir with 200 neurons, where the neurons in the
hidden layer have 10 percent sparse connections. The maximum weight for the
uniform random weights from input to hidden layer was set to unity, while the
maximum weight for the reservoir weights was set to 0.23. The neurons used
were analog.

3.3 Benchmark Results

The first column in Table 1 describes the datasets and the source for the data,
where UCI stands for the University of California data repository [14]. The
second column indicates the number of classes, whether the classes are balanced
or unbalanced, the number of data records and the number of features. The
table presents the percent correct classification because that was the only metric
evaluated in [10]. All calculations reported in [10] and in this paper were based
on a 50/50 training/test data split and repeated 100 times with different splits.
The class distributions for the different data splits were not held equal. The
reservoir computing cases use a linear partial least squares (PLS) model [8] to
solve for the neural network weights of the second layer. We use PLS because it is
a widely proven method in chemometrics and is generally more robust and easier
to tune than ridge regression. Two results for the reservoir computing cases are
reported: one (RES1) based on a choice of 12 latent variables, and a second set
of results (RES2) for an optimal number of latent variables (corresponding to the
column LV2). The percentage for the best results for each dataset is highlighted
in bold and underscored. Note that in 50% of the cases reservoir computing gave
the best results, but that the best results for reservoir computing and the best
results reported in [10] are very similar for most cases.

Note that all the reservoir models were evaluated with the same reservoir
weights and that even though most of the benchmark classification problems
listed in table I require nonlinear models for good results, only a linear model
was applied to determine the weights of the second layer of the reservoir network.
What is worth mentioning here is that the PLS method for determining the
weights of the last layer, after the reservoir layer, now requires a much higher
number of latent variables than is usually the case for PLS models. This indicates
that the reservoir layer tends to spread out the eigenvalues more and that more
eigenvalues are now relevant and important. This also explains why a standard
regression model often yields a reasonable model for reservoir computing.

Note that the results from [10] were all best case results, and were the best
picks for a variety of neural network models and parameter settings. In the
case of reservoir computing only the number of latent variables for the linear
PLS model needs to be determined (once the reservoir settings have been con-
ditioned). Note also that the same reservoir weights and settings were used for
all 16 benchmark problems.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

Dataset #classes, #data, #vars RES1 RES2 LV2 Silva [10]
CHD2 [14] 2U,303,13 75.571 82.143 1 83.33
Check2x2(200,50) 2B,200,2 93.430 94.000 20 92.84
Check4x4(200,50) 2B,200,2 59.050 75.170 40 79.40
CTG16 [18] 10U,2162,23 66.258 74.914 50 84.50
Ionosphere [14] 2U,351,34 91.875 92.286 6 88.50
Liver [14] 2U,345,6 70.286 72.571 6 70.32
Olive [15] 9U,572,8 92.731 95.227 15 94.62
PB12 [16] 4B,608,2 92.928 92.898 20 92.90
Pima Diabetes [14] 2U,768,8 73.021 79.286 4 76.82
Sonar [14] 2U,208,60 74.260 76.048 7 79.18
Spam [14] 2U,4601,57 93.286 93.429 15 93.35
Thyroid [14] 3U,215,5 96.429 97.143 15 96.75
Vehicle [14] 4U,846,18 76.466 77.544 20 81.93
Vowel [17] 11B,990,10 55.941 87.521 50 88.47
WDBC [14] 2U,569,30 97.143 96.143 20 97.44
Wine [14] 3U,178,13 97.617 97.865 7 98.05

Table 1: Benchmark comparisons for reservoir computing for the 16 multi-class
classification data sets in [10]. The number of latent variables for RES1, LV1, is
12 in all cases.

4 Conclusions

This paper introduced reservoir computing for static pattern recognition. The
novelty of this paper is that for static pattern recognition tasks, the reservoir
dynamics are stabilized before applying the sigmoid activation function. We
have demonstrated that reservoir computing shows excellent classification accu-
racy for 16 challenging nonlinear multi-class and often unbalanced classification
tasks. These results are impressive because only a linear partial least squares
(PLS) model was used for determining the weights of the second layer, requir-
ing just one single parameter setting (i.e., the number of latent variables used
in PLS). We have shown multi-class classification with reservoir computing for
static pattern recognition is robust to the reservoir settings: (i) the same reser-
voir was used for all classification tasks, and (ii) preliminary experiments with
3 different reservoir settings showed qualitatively similar results. The reser-
voir layer performs a nonlinear data projection in an unsupervised mode and
that contrary to neural networks trained with the back-propagation algorithm
reservoir computing is (more) brain-like plausible. Because there is no need for
extensive parameter tuning, reservoir computing also holds the promise of learn-
ing from fewer patterns. There are many open issues with reservoir computing
left that need further investigation. Obvious questions are: (i) Can we condi-
tion reservoirs for certain types of pattern recognition problems? (ii) What is
the role of the sparsity of the reservoir? (iii) Because reservoir computing re-
lies on recurrent neural networks, is it possible to achieve superior results for
connection problems [19]? (iv) How to condition optimal reservoir settings for
such problems? (v) Is it possible to replace the PLS solver for the second layer
by a more brain-like plausible algorithm? (vi) Why do PLS models require a

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

high number of latent variables for optimal results? (vii) Is it possible to gain a
physical insight into the required number of latent variables?

References

[1] D. Verstraeten, B. Scrauwen, M. D’Haene, and D. Stroobandt, An experimental unifica-
tion of reservoir computing methods. Neural Networks, Vol. 20, pp. 391-403, 2007.

[2] Benjamin Schrauwen, On implementing reservoir computing. Invited talk, NIPS work-
shop, December 8-9, Whistler, CA, 2006.

[3] Wolfgang Maass, and Henry Markram, On the computational power of recurrent circuits
of spiking neurons. Journal of Computer and System Sciences. Vol. 69(4), pp. 593 - 616,
2004.

[4] Wolfgang Maass, Thomas Natschläger, and Henry Markram, Real-Time computing with-
out stable states: A New Framework for Neural Computation Based on Perturbations.
Neural Computation. Vol. 14, pp. 2531-2560, 2002.

[5] Jaeger H., Adaptive nonlinear system identification with echo state networks. In Ad-
vances in Neural Information Processing Systems, Vol. 15, S. Becker, S. Thrun, and K.
Obermayer (Eds.), MIT Press, Cambridge, MA, 2003.

[6] Jochen J. Steil, Backpropagation-Decorrelation: Online recurrent learning with O(N)
complexity. Proceedings IJCNN, Vol. 1, pp. 843-848, 2004.

[7] A. E. Hoerl, and R. W. Kennard, Ridge regression: Biased estimation for non-orthogonal
problems. Technometrics, Vol. 12, pp. 69-82, 1970.

[8] Svante Wold, Michael Sjöström, and Lennart Eriksson, PLS-Regression: a basic tool of
chemometrics. Chemometrics and Intelligent Laboratory Systems, Vol. 58, pp. 109-130,
2001.

[9] P. J. Werbos, Beyond regression. New tools for prediction and analysis in the behavioral
sciences. Ph.D. Thesis. Harvard University, 1974.

[10] Lúıs Miguel Almeida da Silva, Neural networks with error-density risk functionals for
data classification. Ph. D. Dissertation, FEUP. School of Engineering, University of Porto,
Portugal, May 2008. http://www.di.ubi.pt/˜lfbaa/entnets.html

[11] Rosipal R., and Trejo, L. J., Kernel partial least squares regression in reproducing kernel
Hilbert spaces. Journal of Machine Learning Research, Vol. 2, pp. 97-128, 2001.

[12] B. Boser, I. Guyon and V. Vapnik, A training algorithm for optimal margin classifiers.
In Proceedings of the 5th Annual Workshop on Computational Learning Theory, pp.
144-152, Pittsburgh, PA, 1992.

[13] Lúıs M. Silva, Mark Embrechts, Jorge M. Santos, and J. Marques de Sá, The influence
of the risk functional in data classification with MLPs. Proceedings of the 18th Interna-
tional Conference of Artificial Neural Networks, ICANN 2008. Lecture notes in computer
science, vol. 5163, pp. 185-194, 2008.

[14] C. Blake, E. Keogh, and C. Mertz [1988] UCI repository of machine learning databases,
http://www.ics.uci.edu/˜mlearn/MLRepository.html.

[15] M. Forina and C. Armanino, Eigenvector projection and simplified nonlinear mapping of
fatty acid content of Italian olive oils. Ann. Chem, Vol. 72, pp. 125-127, 1981.

[16] R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton, Adaptive mixtures of local experts.
Neural Computation, Vol. 3, pp. 79-87, 1991,

[17] Trevor Hastie, Robert Tibshirani, and Jerome Friedman The Elements of Statisti-
cal Learning: Data Mining, Inference, and Prediction, Springer 2001. http://www-
stat.stanford.edu/˜tibs/ElemStatLearn/

[18] J. P. Marques de Sá, Applied Statistics using SPSS, STATISTICA and MATLAB, pp.
420, Springer, 2007.

[19] M. L. Minsky and S. A. Papert, Perceptrons. MIT Press, Cambridge, MA, 1969.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

