ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

Kernelizing Vector Quantization Algorithms
Matthieu Geist!?? and Olivier Pietquin' and Gabriel Fricout?

1- Supélec, IMS Research Group, Metz, France
2- ArcelorMittal Research, MC Cluster, Maizieres-les-Metz, France
3- INRIA Nancy - Grand Est, CORIDA project-team, France

Abstract. The kernel trick is a well known approach allowing to implicitly
cast a linear method into a nonlinear one by replacing any dot product by
a kernel function. However few vector quantization algorithms have been
kernelized. Indeed, they usually imply to compute linear transformations
(e.g. moving prototypes), what is not easily kernelizable. This paper intro-
duces the Kernel-based Vector Quantization (KVQ) method which allows
working in an approximation of the feature space, and thus kernelizing any
Vector Quantization (VQ) algorithm.

1 Introduction

A common approach to handle nonlinear problems is to map the initial data
set to a (generally higher dimensional) feature space which preserves the inher-
ent data groupings and in addition simplifies the associated structure of data.
However, as this feature space may be of high and possibly infinite dimension,
directly working with the transformed variables is generally considered as an
unrealistic option. This is the aim of the kernel trick described hereafter.

A kernel K is a continuous, symmetric and positive semi-definite function.
The kernel trick relies on the Mercer theorem [1] which states that each kernel
can be expressed as a dot product in a higher dimensional space. More precisely,
for each kernel K, there exists a mapping ¢ : X C R™ — F (F being the so-
called feature space) such that Va,y € X, K(z,y) = (p(z), ©(y)). Note that this
associated nonlinear mapping can be explicitly built (e.g. polynomial kernels) or
not (e.g. Gaussian kernels). Thus, any algorithm which solely uses dot products
can be cast by this kernel trick into a nonlinear procedure by implicitly mapping
the original space X to the higher dimensional one F.

However the kernel trick has some limitations. It cannot be applied to
algorithms which imply to compute linear transformations of the form 2’ =
Z?;l Aix;. For example, in the k-means algorithm, new prototypes are com-
puted as the centroid of associated data points, that is informally 2’ = % Zﬁl i,
or in Kohonen maps algorithms, a prototype ¢ has to be moved toward a new
input z, that is ¢ < ¢+ A(z — ¢) where A can be understood as a moving ratio.
Performing linear transformations in the feature space in order to kernelize any
vector quantization (VQ) algorithm is the problem addressed in this paper.

To do so, a dictionary method [2] is used so as to work directly in an approx-
imation of the feature space F, still without using ¢ explicitly. Section 2 reviews
some related works. Section 3 presents the dictionary method which is a kernel

541

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

sparsification procedure based on an approximate linear dependency argument.
The Kernel-based Vector Quantization (KVQ) method is presented in Section 4.
Notice that batch and online algorithms can be envisioned. Section 5 concludes
and sketches future works.

2 Related Works

In this section some approaches for kernel clustering and vector quantization are
briefly reviewed. Two types of algorithms will be distinguished: metric-based
methods and feature space methods. Furthermore, the reader can refer to [3] for
a survey on kernel (and spectral) methods for clustering and vector quantization.

A distance in the feature space can be computed using the kernel trick. For
a specific kernel K and the associated mapping ¢, the distance between the
images of two elements x and y of X’ can be computed using the bilinearity of
the dot product and the kernel trick: [|p(x) — @(y)||?> = K(z,2) — 2K (2,y) +
K (y,y). Some approaches use this kernelized metric to directly cluster in the
feature space, using algorithms which are expressed solely with dot products and
distances. This approach is used in [4] to kernelize the k-means algorithm. It is
applied in [5] to the Growing Neural Gas (GNG), however prototypes movements
are done in the working space X (and thus the GNG is not fully kernelized). A
k-means like approach using a stochastic optimization is introduced in [6] and
extended in [7]. Our approach benefits from this metric view, however it applies
to a broader class of algorithms.

Another approach is to directly work in the feature space for algorithms which
implies linear transformations. State-of-the-art methods usually express a point
in the feature space as a linear combination of all images of data points, that
is y = >, aip(z;) with n being the size of the data set. An update rule for
these linear combination’s weights is then derived, depending on the algorithm
at sight. Note that the nonlinear mapping ¢ is never explicitly computed. Using
this idea, the Self Organizing Map (SOM) is kernelized in [8] and [9], the Neural
Gas (NG) algorithm in [10] and a fuzzy topographic clustering algorithm in
[11]. This approach can be (more or less directly) applied to a larger class of
algorithms than the previous one, as it allows computing linear transformations
in the feature space. However it is computationally inefficient, as all data points
are considered. The update rule for the linear combination weights has to be
derived for each algorithm. Moreover, it does not work for online algorithms, for
which data points are not known beforehand. The method proposed in this paper
is close to the latter ones, as a feature vector is expressed as a linear combination
of data points images. However, not all of them are necessary, and the set of data
points to be used can be constructed online, thus this contribution overcomes
the previous difficulties: it is more generic (there is no need to derive a specific
rule for each algorithm), it can be applied to batch and online algorithms, and
it is computationally cheaper, as a sparse representation of the feature space is
maintained.

542

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

3 Dictionary Computation

As said in Section 1, the kernel trick corresponds to a dot product in a higher
dimensional space, associated with a mapping ¢. By observing that although F
is a (very) higher dimensional space, ¢(X) can be a quite smaller embedding, the
objective is to find a set of p points in X" such that ¢(X) is approximately embed-
ded in Span{¢(Z1),...,»(Zp)} and that {©(Z1),...,¢(Zp)} are approximately
linearly independent [2].

This procedure is iterative. Suppose that samples x1, x2, ... are sequentially

observed. At time t, a dictionary D;_; = (ij);)":’f C (x;)Z] containing p;_;

elements is available where by construction feature vcctor; ©(Z;) are approx-
imately linearly independent in F. Sample z; is then observed and is added
to the dictionary if ¢(z;) is (approximately) linearly independent on D;_;. To
test this, weights a = (ai,...,ap, ,)T have to be computed so as to verify
1355 ajp(3;) —p(x:)[|* < v, where v is a predefined threshold determining the
quality of the approximation (and consequently the sparsity of the dictionary).
This can be solved by resolving 6, = mingegre—1 || 2050 a;0(Z5) — @(x) || If
0; > v, feature vectors are approximately independent and x; = &, is added to
the dictionary, otherwise not.

Using bilinearity of dot products, replacing them by kernels, and defining
the p;_1 X ps_1 matrix K;_; and the p,_; x 1 vector k,_1(z) as (f(t_l)m' =
K (&;,%;) and (k;_1(x)); = K (z,%;), the linear dependency test can be expressed
in a matrix form: §; = min,cpre—1 {an(t,la — 2aTI~<:t,1(act) + K(x,x¢)}. This
quadratic problem can be solved analytically and its solution is given by a; =
IN(t__llkt_l(xt) and §; = K(z¢, 2¢)—ki—1(w¢)Tag. 18 < v, o(x¢) is approximately
linearly dependent on D;_1 and can be written as ¢(z;) = > 07" aip(F;)+¢he ~

Pt aip(@), with ||eres|] < /v. Otherwise, if §; > v, x; = &), is added to
the dictionary (approximate linear independence). See [2] for more details and
figure 1 for an illustration. In the rest of this paper, the space embedded in F and
spanned by the basis ¢(D) will be written Fp. Bold variables x will represent
elements of the space spanned by the images of the dictionary elements, and
classic variables x will represent elements of the working space X.

4 Kernel Vector Quantization

Suppose that a basis (D) = {¢(Z1),...,9(Z,)} is available. Recall that points
Z1,..., %, are explicitly known, but not their images ¢(%1),...,»(Zp). Any fea-
ture vector ¢(x) € F, with € X, can be approximately expressed in this basis:
there exists a vector a* = (a¥,...,aX)” such that o(z) = x = Y_7_| a¥o(T;).
As seen in Section 3 the vector a* can be easily computed. The principle of the
approach presented here is to directly work in fp, the image ¢(x) of a point
x € X being represented by its coefficients a* in the basis, if necessary.

As we work in the space spanned by the basis ¢(D), any linear combination
of vectors ¢(Z1),...,¢(&p) can be considered. For a specific y € Fp, which can

be written y = Y7, a¥¢(%;), it cannot be assessed that there exists a point

543

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

Fig. 1: The dictionary D = {&1,Z>} is built from X. The image of this dic-
tionary ¢(D) is used to span Fp. The image ¢(X) of the working space X is
approximately embedded in Fp, that is the distance between p(X) and Fp is
at the most /z. The point y € Fp is a linear combination of ¢ (&) and o(Zs),
however it has no antecedent in X.

y € X such that ¢(y) =y, for example if y is an approximate linear combination
of images of training points. See figure 1 for an illustration. The classical kernel
trick applies to algorithms for which just dot products have to be computed,
and it is here extended to algorithms for which linear transformations have to
be computed too. The manner to do these two elementary operations in the
posed framework is now shown.

4.1 Dot Product Computation

Suppose that the original algorithm requires computing a dot product between
two points x and y of X. By applying the kernel trick, one has to compute
(p(x), p(y)) = K(x,y). If x and y are known, it is possible to directly compute
K(z,y). But recall that the proposed approach aims to directly work in the
space spanned by ¢(D). Thus it is possible that only x or y in Fp are known.
We recall that there is no reason that there exists =,y € X such that x = p(z) or
y = ¢(y). Thus one can write x = Y ©_, a¥p(&;) and y = Y ©_, aYp(&;). The
dot product can still be computed: (x,y) = (3-7_, aX¥o(F;), Y b, a) (@) =

f,j:l afal K(%;,1;) = (a*)T Ka¥, K being defined in section 3. If x lies in the
span of p(D) and y in the working space then the dot product between x and

¢(y) can be computed as (x, p(y)) = (Xi_; aXe(#:), p(y)) = (a*)"k(y), k being
defined in section 3. Recall that computing a distance yields to the evaluation
of a dot product, thus [[x —y[|* = (a* — a¥)TK(a* — a¥) and ||x — o(y)|? =
()" Ka* = 2(a*)Tk(y) + K (y,y)-

The proposed approach is thus not restrictive and still allows computing dis-
tances and dot products, as the kernel trick standard approach. However a point
of Fp has not necessarily an antecedent and this can induce more computation
than just applying a kernel function.

544

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

Algorithm 1: Kernel Vector Quantization

Compute dictionary D and matrixes K and K1, from the given
samples or from a compact set, in a preprocessing step (batch) or online ;

Replace any training point x by the associated vector a* = f(‘lff(x) of
x = p(z) expressed in the basis ¢(D) ;

Replace any dot product (z,y) by the dot product (a*)TKaY. Use
directly K or k if possible (see section 4.1);

Replace any distance [z — y||* by the distance (a* — a¥)TK (a* — a¥).
Use directly K or k if possible (see section 4.1);

Replace any linear transformation y = (21,...,Zm) (A, ..., Am)? by the
corresponding linear transformation a¥ = (a**,...,a*™)(A1,..., Apn)T

4.2 Linear Transformation Computation

Suppose that the original algorithm requires computing a linear transformation
= 2211 Aix;. In order to be consistent with the kernel trick, kernelizing this
kind of algorithm implies computing a point x’ € F such that x' = Y/" | \ix;
with X1, ...,%Xm € Fp and using the same (i)™ ;. There is a simple way to do
so directly in the approximated feature space.

From the fact that no more than linear combinations are considered, each
vector x; can be expressed as X; = le a;iw(ij). It is thus easy to express x’ in
the same basis: x' = 3770 Mi(3°7_ ato(T5)) = 30_, (3071, Miaj)p(@;). That
is X' is associated with the coordinates a* = (37", \ja¥i, ..., 3", Aiax)T =
A\ with A being the p x m matrix (a*!,...,a*™) of coordinate column vectors
a*i and X\ being the m x 1 vector (A1,..., \p)T.

Linear transformations are therefore made possible through the use of the
approximate feature space. With the proposed KVQ, any VQ algorithm (which
solely implies computing dot products and linear transformations) can be straight-
forwardly kernelized. Notice that the KVQ can be applied to batch and online
algorithms. For batch algorithms, the dictionary can be computed from the data
set or from a compact set X embedding the working space X. In the case of
online algorithms, the dictionary can be computed online as training sample are
observed or in a pre-processing step from a compact set embedding the working
space. The KVQ is summarized in algorithm 1.

5 Conclusion

We have proposed a novel generic approach which allows extending the field
of algorithms that can benefit from the kernel trick to any algorithm which
only requires computing dot products and linear transformations. Moreover,
the KVQ can be applied to batch and online algorithms. Although the obtained
results are approximated, this can be seen as an efficient extension of the clas-

545

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational
Intelligence and Learning. Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.

sical kernel trick which can provide itself useful for kernel vector quantization
algorithms. Compared to papers reviewed in section 2, the KVQ allows handling
linear transformations (compared to metric-based approaches), it is generic (it
can be systematically applied to any VQ algorithm, contrary to other feature
space approaches), it can be applied to batch and online algorithms and it is
computationally cheaper than other feature space approaches, as a sparse rep-
resentation of the feature space is maintained. Moreover the trade-off between
sparsity and accuracy can be controlled through the choice of the sparsity fac-
tor. For now, some VQ algorithms have been kernelized [12], and especially
GNG-T, a new neural gas algorithm [13]. Some results are provided on the web
page. Work is ongoing to use kernelized VQ algorithms as a preprocessing step
for Support Vector Machines (SVM) and to compare distortions in working and
feature spaces.

Acknowledgement

The authors would like to acknowledge Hervé Frezza-Buet for developing the
KVQ C++ library available online [12].

References

[1] V. N. Vapnik. Statisical Learning Theory. John Wiley & Sons, Inc., 1998.

[2] Y. Engel, S. Mannor, and R. Meir. The Kernel Recursive Least Squares Algorithm. IEEE
Transactions on Signal Processing, 52(8):2275-2285, 2004.

[3] M. Filippone, F. Camastra, F. Masulli, and S. Rovetta. A survey of kernel and spectral
methods for clustering. Pattern Recogn., 41(1):176-190, 2008.

[4] S. Vishwanathan and Narasimha M. Murty. Kernel Enabled K-Means Algorithm. Tech-
nical report, National ICT Australia, Statistical Machine Learning Program, 2002.

[5] L. d’Amato, J. A. Moreno, and R. Mujica. Reducing the Complexity of Kernel Machines
with Neural Growing Gas in Feature Space. In IBERAMIA, pages 799-808, 2004.

[6] M. Girolami. Mercer kernel-based clustering in feature space. IEEE Transactions on
Neural Networks, 13(3):780-784, May 2002.

[7] D.S. Satish and C. C. Sekhar. Kernel based clustering and vector quantization for speech
recognition. In 14th IEEE Signal Processing Society Workshop, pages 315-324, 2004.

[8] R.Inokuchiand S. Miyamoto. LVQ Clustering and SOM Using a Kernel Function. Journal
of Japan Society for Fuzzy Theory and Intelligent Informatics, 17(1):88-94, 2005.

[9] D. MacDonald and C. Fyfe. A new kernel clustering algorithm. In International Con-
ference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies,
volume 1, pages 317-320, 2000.

[10] A. K. Qin, , and P. N. Suganthan. Kernel Neural Gas Algorithms with Application to
Cluster Analysis. In 17th International Conference on Pattern Recognition, volume 4,
pages 617—-620, Washington, DC, USA, 2004. IEEE Computer Society.

[11] T. Graepel and K. Obermayer. Fuzzy Topographic Kernel Clustering. In W. Brauer,
editor, 5th GI Workshop Fuzzy Neuro Systems 98, pages 9097, 1998.

[12] H. Frezza-Buet. KVQ C++ library. http://ims.metz.supelec.fr/spip.php?article87, 2008.

[13] H. Frezza-Buet. Following non-stationary distributions by controlling the vector quan-
tization accuracy of a growing neural gas network. Neurocomputing, 71(7-9):1191-1202,
2008.

546

