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Abstract. Neural maps and Learning Vector Quantizer are fundamental paradigms
in neural vector quantization based on Hebbian learning. The beginning of this
field dates back over twenty years with strong progress in theory and outstand-
ing applications. Their success lies in its robustness and simplicity in application
whereas the mathematics beyond is rather difficult. We provide an overview on
recent achievements and current trends of ongoing research.
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1 Introduction

Supervised and unsupervised vector quantization is a basic task in many machine learn-
ing applications. The main players in unsupervised prototype based learning can be
identified by the family of c-mean algorithms and its neural counterparts Self Orga-
nizing Map (SOM) [24] and Neural Gas (NG) [27]. In (semi-)supervised learning the
primal prototype based learning models are the family of learning vector quantizers
(LVQ) and supervised extensions of SOM and NG. Subsequently we tackle each of
these paradigms to highlight current trends and recent developments.

2 Unsupervised Learning

Unsupervised vector quantization can be seen as a projection of possibly high-
dimensional data of an input space onto a set of prototypes, which may have an external
ordering defined by outer structures. Example for such outer structures may be regular
grids, graphs, trees and so on. In case of such structures we result a mapping from the
data space to this output structure. The generic principle behind vector quantization
is the representation of data by its most similar prototype of the vector quantization
model or its equivalent in the outer structure. The most prominent representant of un-
supervised vector quantizers without outer-structure is the famous c-means algorithm
[19].

Neural maps are biologically based vector quantizers. Here the adaptation schemes
for the prototype vectors are usually based on Hebbian learning. Moreover the external
structure can also be motivated by biological models like the SOM. However, the basic
principle of representation by most similar prototypes is kept.
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2.1 Convergence, energy functions and topographic mapping

For the famous c-means the convergence has been shown in [37], but it has been found
to be rather instable with respect to its initialization. This motivates extensions such
as fuzzy-c-means [1] or SOM/NG. Related to c-means are approaches based on the
principle of statistical physics like deterministic annealed learning vector quantization.
Subsequently, the initial work of Kohonen given in [23, 22, 24] has provided a new
neural paradigm of prototype based vector quantization. The SOM is the most applied
neural vector quantizer [24], having a regular low dimensional grid as an external topo-
logical structure between prototypes. Yet, for its original algorithm, the convergence
analysis is very difficult and only solved for special (simple) cases. A redefinition of
being the most similar prototype leads to the Heskes variant of the SOM [20]. The re-
spective learning follows a stochastic gradient descent on a cost function which ensures
the convergence. The NG circumvents the convergence problem of the original SOM by
the introduction of a dynamical external neighborhood structure of prototypes, which
is determined by the shape of the data space to be partitioned. Both approaches, SOM
and NG, have in common that an annealing scheme for the range of the neighborhood
cooperativeness is used. However, it is not a unique correspondence to the deterministic
annealing according to the principles of statistical physics [52, 20].

The statistical properties of the data are implicitly preserved by the magnification
property [51]. Whereas for NG the structure preserving mapping (topology preserva-
tion) is inherently given, this property may be violated in SOMs due to the predefined
external grid structure. Growing grids as well as more complicated grid structures like
hyperbolic lattices or graphs and trees allow a broader range of SOM applications with-
out loosing topography [29, 28]

2.2 Variants for specific data structures

Originally most of the vector quantizers were designed for the analysis of Euclidean
data. In this case the derivatives of the distance are directly feeded in the update
equations for prototypes. In case of gradient descent learning this follows from the
derivatives of the cost function. In the last years the appropriate choice of other (dif-
ferentiable), problem specific, metrics become popular, such as: Lee metric [26] as a
generalization of the Minkowski metric, Sobolev norms [50] or kernels there of. In this
line also kernelized SOMs come apart where direct distance calculations are replaced by
scalar products in a kernel space [49, 48]. This also motivates kernelized vector quan-
tization as shown by Geist [7] and others [47]. Initials steps on unsupervised prototype
base feature selection by relevance learning have been done in [44]

A subsequent analysis of prototypes can be applied for robust cluster analysis,
which is less sensitive to noise or initialization, compared to traditional cluster analysis
techniques, applied to original data. Also prototype based fuzzy clustering provides a
substantial key to advanced cluster analysis as shown in [2, 21].

If only similarities between data points are available, traditional approaches are not
applicable. For those data structures batch variants are used. In particular, the median
or relational variants of the vector quantizers given above are of interest [17, 16, 6]. A
median based fuzzy c-means for similarity data is presented by Geweniger et al. [8].
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Other extensions of SOM may deal with even more complicated data structures like
hyperbolic spaces or, as shown here by Rossi et al. [29] for graph structures. Another
special class of data structures occurs by means of time-series and time-related data.
Here recursive variants of the SOM and NG take into account the special data structure
by context learning [41, 25, 11, 42]. Yet, theoretical properties of these algorithms are
not completely understood so far. Special variants of vector quantizers for mathematical
and geometrical objects, like manifolds and subspaces, are also in the focus of interest
[45].

3 Supervised and Semi-Supervised Learning

Supervised learning requires additional label information during learning. This labeling
may be provided in form of class labels, potential continuous output attributes (regres-
sion), graduated class assignments (fuzzy label) or auxiliary data relations [40].

In prototype based classification this additional information is utilized for improved
class separation compared to unsupervised learning with simple post-labeling, but keep-
ing the Hebbian learning paradigm.

3.1 Convergence, energy functions and relation to margin optimization

One of the most popular learning vector quantizer is standard LVQ as introduced by
Kohonen (in its variants) [24]. These approaches are heuristically motivated. Yet, they
offer a rich variability in behavior and a mathematical analysis of this is quite difficult
[61]. Recent approaches for stability and convergence analysis are based on methods
from statistical physics [3, 9]. Newer extensions of LVQ try to overcome the stability
problem by different strategies as improved windowing for standard LVQ or probabilis-
tic modeling like Soft Nearest Prototype Classification (SNPC) or Robust Soft-Learning
Vector Quantization [39, 38] and neighborhood cooperativeness as shown in Supervised
Neural Gas (SNG) [13, 58]. The latter ones have in common that learning follows a
(stochastic) gradient descent on a cost function. The generalized LVQ also belongs to
this cost function based methods as one of the earliest cost function based extensions of
standard LVQ [30].

It is straight forward that prototype based classification is strongly related to em-
pirical risk minimization (ERM) and margin optimization. While in traditional ERM
the sample margin is optimized, prototype based classification focus on distance based
margins [34, 12, 3]. These distance based optimization is applicable also for faster
learning strategies e.g. active learning [34, 18]. Thus prototype based classification can
be seen as an alternative approach to Support Vector Machines (SVM) which focus on
structural risk minimization (SRM) [14].

A new methodology for development of new classification algorithms, also applica-
ble for semi-supervised learning, is to equip cost function based unsupervised learning
approaches with an additional term judging the classification accuracy. Both optimiza-
tion subjects can be weighted gradually. Thus statistical data information like densities
and shape are merged with class label information for classification decision. For exam-
ple the Heskes variant of SOM and NG can serve as generic starter for such algorithms.
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These approaches can also be used for class visualization according to their underlying
topographic properties [4, 55] which also contributes to stability in learning. Another
approach for visualization is the Exploratory Observation Machine (XOM) for parallel
structure preserving dimensionality reduction and data clustering [60].

3.2 Variants for specific data structures

As in unsupervised learning, the underlying data embedding assumption is also in the
case of supervised prototype based learning an Euclidean one. However, the incorpo-
ration of label information offers extended possibilities to improve the modeling. The
approach with the most impact following this line is a data specific metric adaptation
taking the label information into account. Prominent candidates of this type are the
scaled Euclidean metric, which weights each data dimension for improvement of the
classification performance. Thereby the scaling parameter are determined taking the
labeling into account and improving e.g. class separation. Multiple prototype based
methods have been extended in this way [35, 59, 15]. The straight forward general-
ization is to use the Mahalanobis distance whereby the positive semi definite matrix
of the respective bilinear form is optimized subject to the classification performance
[32, 31, 36]. Although the number of adaptation parameters is drastically increased,
the convergence is self-stabilizing in terms of eigen-analysis [31]. This behavior is
also observed in pure matrix learning of bilinear forms [43]. From this methodology a
projection technique can be derived, providing a supervised projection of the data on
a lower dimensional space as shown in [5]. This technique can be used for optimal
visualization of class separation.

Generally, these matrix based approaches can be seen as classifiers taking linear
relations into account. Higher order correlations can be incorporated in feature selec-
tion for classification performance improvement, by utilization of information theoretic
measures for example entropies, mutual information or divergence measures [46, 53].
Obviously all kernel based vector quantizers take non-linear information into account,
too.

If only incomplete label information is available semi-supervised methods can com-
bine unsupervised and supervised learning such that as much as possible information
is extracted from the data. For this purpose the above mentioned supervised extensions
of the standard unsupervised prototype based algorithms offer an appropriate learning
scheme [57, 33, 56, 55]. These approaches have the additional feature that a gradually
classification (fuzzy) is provided. Another fuzzy classifier is the FSNPC as the fuzzy
extension of SNPC, however it is not semi-supervised[54].

As for unsupervised learning, many of the prototype based classifier can be ex-
tended such that they are able to deal only with dissimilarity data. These batch/median
or relational variants include the Supervised Relational NG and Relational SOM [10] to
name just a few. They offer a greater variability according to the underlying similarity
structure which is not necessarily assumed to be a metric in case of median based al-
gorithms. Another strategy would be to incorporate the knowledge about the structural
nature of the data by means of special norms like Lee or Sobolev norms for functional
data as outlined for unsupervised learning above. Other specific norms could be general
minkowski norm or hyperbolic distances.
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4 Conclusion

This introductory paper spotlights recent developments, achievements and research foci
of prototype based supervised and unsupervised vector quantization. It can be stated
that also while quite established, their are still many interesting open problems. More-
over the field offers continuously new challenging questions both, in theory and driven
by outstanding applications. Some of them can be found in this volume as contributions
to the special session dedicated to this topic at this European Symposium on Neural
Networks 2009.
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