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Abstract. We present a technique to extend Robust Soft Learning
Vector Quantization (RSLVQ). This algorithm is derived from an explicit
cost function and follows the dynamics of a stochastic gradient ascent.
The RSLVQ cost function involves a hyperparameter which is kept fixed
during training. We propose to adapt the hyperparameter based on the
gradient information. Experiments on artificial and real life data show
that the hyperparameter crucially influences the performance of RSLVQ.
However, it is not possible to estimate the best value from the data prior
to learning. We show that the proposed variant of RSLVQ is very robust
with respect to the choice of the hyperparameter.

1 Introduction

Learning Vector Quantization (LVQ) constitutes a family of supervised learn-
ing algorithms which are widely used for the classification of potentially high-
dimensional data. The basic approach is very intuitive: classification is based on
a set of so-called prototype vectors representing the classes, and a new feature
vector is assigned to the class represented by the closest prototype. Since the
basic LVQ scheme was introduced in 1986 [1], a large variety of modifications
has been proposed; see e.g. [1, 2, 3]. The methods are very attractive due to
their computational simplicity and flexibility. The algorithms are easy to im-
plement, they can naturally deal with multi-class problems and the prototype
vectors allow for an immediate interpretation of the resulting classifier.

The learning rules of several LVQ procedures involve a hyperparameter, such
as the window size in LVQ2.1 [1] or the softness parameter σ2 in Soft LVQ [3]
and RSLVQ [3]. Usually, the hyperparameter is kept constant in the learning
process, and it is chosen by means of a validation procedure. In [4], an annealing
schedule is proposed to reduce the respective hyperparameter of an LVQ algo-
rithm in the course of training. However, this schedule is purely heuristically
motivated and does not follow any learning objective.

In this paper, we focus on RSLVQ and introduce a well-founded strategy to
deal with the algorithms’ hyperparameter σ2. RSLVQ is derived from an explicit
cost function which is optimized with respect to the model parameters using the
method of steepest ascent. Since the cost function also contains σ2, we propose
to introduce σ2 as a further degree of freedom and to maximize the objective
function with respect the hyperparameter based on the gradient information.

In our experiments, we demonstrate the influence of the hyperparameter on
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the classification accuracy of RSLVQ and study the effect of the proposed opti-
mization method using artificial data and a real-life data set.

2 Review of Robust Soft LVQ

Assume training data {ξk, yk}l
k=1 ∈ RN × {1, . . . , C} are given, N denoting the

data dimensionality and C the number of different classes. An LVQ network
W = {(wj , c(wj)) : RN × {1, . . . , C}}m

j=1 consists of a number of prototypes
w ∈ RN which are characterized by their location in feature space and their class
label c(w) ∈ {1 . . . , C}. Given a distance measure d(ξ, w) in RN , classification
is based on a winner-takes-all scheme: a data point ξ ∈ RN is assigned to the
label c(ξ) = c(wi) of the prototype i with d(wi, ξ) ≤ d(wj , ξ), ∀j �= i. Many
LVQ variants use the squared Euclidean distance d(ξ, w) = (ξ −w)T (ξ −w) to
quantify the similarity between feature vectors and prototypes.

The Robust Soft LVQ - algorithm [3] to train the prototype locations is based
on a statistical modeling of the given data distribution, i.e. the probability
density is described by a mixture model. It is assumed that every component j
of the mixture generates data which belongs to only one of the C classes. The
probability density of the data is approximated by

p(ξ|W ) =
C∑

i=1

∑
j:c(wj)=i

P (j) p(ξ|j), (1)

where
∑

j P (j) = 1, and the conditional density p(ξ|j) is a function of the
prototype wj . A possible choice is the normalized exponential form p(ξ|j) =
K(j) · exp f(ξ, wj , σ

2
j ). In [3] a Gaussian mixture is assumed with K(j) =

(2πσ2
j )−N/2 and f(ξ, wj , σ

2
j ) = −d(ξ, wj)/2σ2

j ; where d is the squared Euclidean
distance, and every component is assumed to have equal variance σ2

j = σ2 and
equal prior probability P (j) = 1/m, ∀j. RSLVQ maximizes the likelihood ratio

L =
l∏

k=1

p(ξk, yk|W )
p(ξk|W )

(2)

with respect to the prototype locations by means of gradient ascent. p(ξ, y|W )
is the probability density that sample ξ is generated by a component of the
correct class y. This local density corresponds to the inner sum in Eq. 1. The
learning rule is obtained by taking the derivatives of the RSLVQ cost function
E = log(L) with respect to wj (see [3])

Δwj =
α1

σ2

{
(Py(j|ξ) − P (j|ξ))(ξ − wj), c(wj) = y,
−P (j|ξ)(ξ − wj), c(wj) �= y,

(3)

where α1 > 0 is the learning rate, and Py(j|ξ) and P (j|ξ) are assignment
probabilities

Py(j|ξ) =
exp f(ξ, wj , σ

2)∑
i:c(wi)=y exp f(ξ, wi, σ2)

, P (j|ξ) =
exp f(ξ, wj , σ

2)∑
i exp f(ξ, wi, σ2)

(4)
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with respect to one example (ξ, y). The update rules reflect the fact that pro-
totypes with c(w) = y are attracted by the training sample, while prototypes
carrying any other class label are repelled.

The performance of the algorithm highly depends on the hyperparameter
σ2: since it determines the value of the assignment probabilities (see Eq. 4), it
controls the strength of the attractive and repulsive forces in Eq. 3. In the limit
σ2 → 0, RSLVQ reduces to a learning-from-mistakes scheme, i.e. only in case of
erroneous classification, the closest correct and incorrect prototype are updated.
In the soft version of the algorithm, all training samples lying in an active region
around the decision boundary cause an update of the prototype constellation;
at the same time, a larger number of prototypes is adapted in each learning step
(see [3] for details).

3 Hyperparameter adaptation in RSLVQ

In [4], a heuristic approach is introduced to anneal the value of the hyperparam-
eter in the course of training. The authors propose a schedule which reduces σ2

continuously in each learning step. This may lead to non-monotonic learning
curves, as the performance deteriorates when σ2 becomes lower than the poten-
tial optimum. Hence, the method has to be used in combination with an early
stopping procedure.

In this work, we propose a more systematic approach to treat the hyper-
parameter according to the optimization of the likelihood ratio in Eq. 2. We
adapt the hyperparameter according to the gradient of E with respect to σ2.
The derivative in [5] in combination with

∂f(ξ, w, σ2)
∂σ2

=
(ξ − w)T (ξ − w)

2 σ4

leads us to the update rule

Δσ2 = α2

∑
j

((
δy,c(wj) (Py(j|ξ) − P (j|ξ)) − (1 − δy,c(wj))P (j|ξ)

) d(ξ, wj)
σ4

)
.

The Kronecker symbol δy,c(wj) tests whether the labels c(wj) and y coincide,
and α2 > 0 is the learning rate. The method becomes even more flexible by
training an individual hyperparameter σ2

j for every prototype wj . Due to the
derivative in [5], in combination with

∂f(ξ, w, σ2
j )

∂σ2
j

=
(ξ − w)T (ξ − w)

2 σ4
j

,
∂K(j)
∂σ2

j

= −N

2
1

(2πσ2
j )N/2 σ2

j

we obtain the learning rule

Δσ2
j =

α2

σ2
j

·
{

(Py(j|ξ) − P (j|ξ)) (−N + d(ξ, wj)/σ2
j ), c(wj) = y,

−P (j|ξ) (−N + d(ξ, wj)/σ2
j ), c(wj) �= y.

Using this approach, the update rules for the prototypes in Eq. (3) also include
the local hyperparameters σ2

j .

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.



4 Experiments

In the following experiments, we investigate the training procedure of σ2 in the
context of several learning scenarios. Artificial data sets are used to study the
relation between the optimal hyperparameter and the variance of the training
data. To analyse the influence of hyperparameter optimization on the classi-
fication performance of RSLVQ, the method is applied to the Letter data set
from the UCI repository of machine learning [6]. All findings presented in the
following are averaged over 10 cross-validation repetitions.

Artificial data sets : The data sets constitute binary classification problems
and consist of two Gaussian clusters in a two-dimensional space. The clusters
are centered on μ1 = [−2, 0], μ2 = [2, 0] and consist of 1000 data points, re-
spectively. To analyse the adaptation of a global σ2, we generate clusters with
equal variance ϕ2 varying between 0.5 and 2.5. At first, we fix the prototypes
to the mean values of the distributions to analyse the adaptation of σ2 indepen-
dent of the other parameters of the system. In a second set of experiments, the
hyperparameter and the prototypes are optimized simultaneously. The initial
learning parameters are set to α1 = 0.01 and α2 = 0.001; we use the same learn-
ing rate schedule as in [5] with c = 0.001 and set the hyperparameter initially
to σ2(0) = 1. We choose the mean values of random subsets of training samples
from each class to initialize the prototypes and train the system for 1000 epochs.

Fig. 1 (left) visualizes the mean final values of the hyperparameter obtained
on the different data sets as a function of the clusters’ variance. If the prototypes
are constant and are placed in the cluster centers, σ2 approaches the variance of
the Gaussians. However, σ2 converges towards smaller values in the experiments
with adaptive prototypes. This result is also confirmed by further experiments
with two spherical clusters of different variance ϕ2

1,2 and local adaptive hyper-
parameter (see Fig. 1, right). Hence, maximizing the likelihood ratio in Eq. 2
corresponds to a density estimation, only if the prototypes correspond to the
cluster means. However, the optimal hyperparameter cannot be estimated from
the data directly, if the classifier is also optimized with respect to the prototype
positions. This holds because of three reasons: for multi-modal data sets which
are trained using several prototypes per class, the assignment of data to pro-
totypes is not clear a priori, such that no statistical estimations can be made.
Even for data sets which are represented using only one prototype per class,
an estimation of σ2 from the data is not obvious since, besides the bandwidth,
σ2 determines the influence of training points on the adaptation and hence the
overall dynamics. Further, prototypes do not necessarily coincide with the class
centers, rather, prototype locations and bandwidth are adapted by the learning
rule to give an optimum decision boundary.

Letter data set : The data set consists of 20 000 feature vectors which encode
16 numerical attributes of black-and-white rectangular pixel displays of the 26
capital letters of the English alphabet. We split the data randomly into a train-
ing and a test set of equal size and compare the test performance of RSLVQ
with constant and adaptive hyperparameter for different initial settings σ2(0).
We choose various values σ2(0) from the interval [0.5, 3.5]. The initial learning
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Fig. 1: Left: Variance ϕ2 of the Gaussians vs. mean final value of the global
hyperparameters σ2 obtained on data sets with clusters of equal variance and
constant and adaptive prototypes. Right: Evolution of the local hyperparam-
eters σ2

1,2 as a function of training time observed on a data set of Gaussians
with unequal variance and constant and adaptive prototypes. The variances are
ϕ2

1 = 2.5 and ϕ2
2 = 1.25. The symbols correspond to σ2

1 (•), σ2
2 (�).

parameters are set to α1 = 0.01, and α2 = 0.001 · σ2(0); the learning rates are
annealed according to the same schedule as in the previous experiment with
c = 0.1. We approximate each class with one prototype respectively and train
the system for 100 epochs.

Our experiments with constant σ2 show that the performance of RSLVQ is
very sensitive with respect to the value of hyperparameter (see Fig. 2, left). The
lowest mean rate of misclassification on the test sets is achieved with σ2

opt = 1.25;
the performance constitutes εtest ≈ 23.1%. However, the curve in Fig. 2 shows
a very sharp minimum, indicating a strong dependence of the classification per-
formance on the value of the hyperparameter. For small σ2 < 1, we observe
instabilities and highly fluctuating learning curves.

Remarkably, by including the proposed optimization scheme into the train-
ing, the sensitivity of the algorithm with respect to σ2 can be eliminated. In
all experiments with adaptive hyperparameter, the mean test error saturates
at εtest ≈ 23.4%, independent of the initial setting σ2(0) (see Fig. 2, left).
Furthermore, the initialization σ2(0) does not influence the final value of the
hyperparameter. As depicted in Fig. 2, right, the parameter converges towards
σ2(final) ≈ 1.8 in all experiments. Hence, the proposed variant of RSLVQ is
much more robust related to the initial choice of the hyperparameter. Espe-
cially for large values σ2(0), the proposed optimization method achieves a clear
improvement in classification performance and speed of convergence, compared
to RSLVQ training with constant σ2. However, despite the extended flexibil-
ity, learning with constant σ2 = σ2

opt still achieves a slightly better performance
than our method. This observation can be explained by the fact that the rela-
tion between the RSLVQ cost function and the classification performance is not
obvious. The optimum of the likelihood ratio does not necessarily coincide with
minimal rate of misclassification. Nevertheless, the learning strategy for σ2 may
simplify the identification of σ2

opt to achieve the optimal performance.
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Fig. 2: Left: Mean test performance at the end of RSLVQ-training with constant
and adaptive hyperparameter as a function of the initial value σ2(0). Standard
error bars would be smaller than the symbol size. Right: Evolution of the
hyperparameter σ2 as a function of training time for different initial settings
σ2(0).

5 Conclusion

In this study, we introduced hyperparameter learning in Robust Soft Learning
Vector Quantization. The classification accuracy of RSLVQ is highly sensitive
with respect to the correct choice of σ2. We proposed to adapt σ2 according to
the optimization of the likelihood ratio which takes the influence of the hyper-
parameter on the RSLVQ cost function into account. As demonstrated in our
experiments, this approach makes the algorithm very robust with respect to the
hyperparameter and renders any trial and error search for an appropriate value
unnecessary.

A restriction of standard RSLVQ consists in the use of the Euclidean dis-
tance measure. In [5], the algorithm is extended with respect to an adaptive
metric structure. We are currently working on combining metric adaptation and
hyperparameter adaptation in RSLVQ, showing first promising results.
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