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Abstract. We propose in this paper an exploratory analysis algorithm
for functional data. The method partitions a set of functions into K clus-
ters and represents each cluster by a piecewise constant prototype. The
total number of segments in the prototypes, P , is chosen by the user and
optimally distributed into the clusters via two dynamic programming al-
gorithms.

1 Introduction

Functional Data Analysis [8] addresses problems in which the observations are
described by functions rather than finite dimensional vectors. A well known
real world example of such data is given by spectrometry in which each object
is analysed via one spectrum, that is a function which maps wavelengths to
absorbance values. Online monitoring of hardware is also a good example of
such data: each object is described by several time series associated to physical
quantities monitored at specified sampling rate.

We focus in this paper on the exploratory analysis of a set of curves (or time
series). The main idea is to provide the analyst with a summary of the set with
a manageable complexity. A classical solution for multivariate data consists in
using a prototype based clustering approach: each cluster is summarized by its
prototype. Standard clustering methods such as K-means and Self Organizing
Map have been adapted to functional data and could be used to implement this
solution [1, 9]. Another possibility comes from the symbolization approaches
in which a time series is represented by a sequence of symbols [4]: a piecewise
constant approximation of a time series is constructed via a segmentation of
the time domain into contiguous intervals on which the series is represented by
its average value, which can be turned into a label in a subsequent quantization
step. When we are given a set of curves, an unique segmentation can be found in
order to represent all the curves on a common piecewise constant basis (see [11]
for an optimal solution). This was used as a preprocessing step in e.g. [10, 5].

We propose in this paper to merge the two approaches: we build a k-means
like clustering of a set of functions in which each prototype is given by a piecewise
constant function. Using dynamic programming, we obtain an optimal segmen-
tation in each cluster while the number of segments used in each cluster is also
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optimally chosen with respect to a user specified total number segments. In
other words, a set of functions is summarized via K ×P real values, where K is
the number of prototypes and P the total number of segments used to represent
the prototypes.

The rest of this paper is organized as follows. Section 2 describes the dynamic
programming algorithm used to obtain an optimal segmentation of the mean
curve of a set of curves. Section 3 shows how this can be combined to a clustering
algorithm with optimal resource allocation between clusters. Section 4 illustrates
the method on a real world dataset.

2 Optimal segmentation

Let us first consider N functions (si)N
i=1 sampled in M distinct points (tk)M

k=1

from the interval [t1, tM ] (points are assumed to be ordered). Our goal is to find
a piecewise constant function defined on [a, b] with minimal squared distance to
all the functions. The complexity of the constant function is fixed by the number
of intervals needed to define it. A complexity P corresponds to a partition of
[t1, tM ] into P intervals (Ip)P

p=1 and to P values (ap)P
p=1 which minimize

E
(
(Ip)P

p=1, (ap)P
p=1

)
=

N∑
i=1

P∑
p=1

∑
tk∈Ip

(si(tk)− ap)2 . (1)

The difficulty lies in the choice of the partition (Ip)P
p=1, as, given this partition,

the optimal values of the (ap)P
p=1 are equal to the µp = 1

N |Ip|
∑N

i=1

∑
tk∈Ip

si(tk).
To derive an efficient algorithm, we first note that the intervals (Ip)P

p=1 define
a partition of the series t1 < t2 < . . . < tP with an ordering constraint: if
tk ∈ Ip and tl ∈ Ip, then {tk, tk+1, . . . , tl} ⊂ Ip. In fact, it is sufficient to define
a partition of (tk)M

k=1 with ordering constraint to obtain a piecewise constant
function, as we do not have information on the functions elsewhere than at the
evaluation points. Given such a partition (Cp)P

p=1, and using the optimal values
of the (ap)P

p=1 defined above, the error to minimize is

E
(
(Cp)P

p=1

)
=

P∑
p=1

N∑
i=1

∑
tk∈Cp

(si(tk)− µp)2 =
P∑

p=1

Q (Cp) . (2)

The error measure is therefore additive over the partition. As pointed out in
[6, 7], finding an optimal partition with ordering constraints with respect to an
additive criterion can be done efficiently via a dynamic programming approach.
In the particular case of constructing the optimal piecewise constant approxi-
mation of a single function, this was pointed out in [2] (see also [11] for the best
basis problem in the case of a set of functions).

Let us define F (k, j) as the quality measure (from equation (2)) of the best
partition into j clusters with ordering constraint of {tk, tk+1, . . . , tM}. The basic
idea is to compute F (k, j) using F (., j − 1). Indeed the best partition into j
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clusters is obtained by minimizing over l Q ({t1, . . . , tl}) +F (l+ 1, j− 1) for two
reasons. First the partition is ordered and therefore we can ask C1 to be equal to
{t1, . . . , tl} for a certain l. Second, the quality measure is additive and therefore
finding the best partition in j clusters with the constraint that C1 = {t1, . . . , tl}
corresponds to finding the best partition of {tl+1, . . . , tM} in j − 1 clusters.

The algorithm proceeds as follows:

1. initialize F (k, 1) to Q ({tk, tk+1, . . . , tM})

2. for j going from 2 to P :

(a) for k going from 1 to M − j + 1 compute

F (k, j) = min
k≤l≤M−j+1

Q ({tk, . . . , tl}) + F (l + 1, j − 1)

We keep track of the wining index l for each F (k, j): this allows to reconstruct the
best partition when we have reached F (1, P ). Given all the Q ({tk, . . . , tl}), this
algorithm runs in O(PM2). The computation of the Q ({tk, . . . , tl}) itself can be
done quite efficiently. A naive approach leads to O(NM3), but a simple recursive
formulation reduces the cost to O(NM2). Indeed we first compute the mean
function µ(tk) = 1

N

∑N
i=1 si(tk) in O(NM). Then, we compute recursively the

µ{tk,...,tl} in O(M2). Finally, Q ({tk, . . . , tl}) are obtained via standard recursive
variance calculation formulae for a total cost of O(NM2).

3 Clustering and resource allocations

The segmentation algorithm proposed in the previous Section can be easily em-
bedded into a K means algorithm. The main idea is to optimize the following
quality criterion

E
(
(Gk)K

k=1, (Pk)K
k=1

)
=

K∑
k=1

∑
si∈Gk

Pk∑
p=1

∑
tl∈Ck

p

(
si(tl)− µk

p

)2
, (3)

where (Gk)K
k=1 is a partition of the functions into K clusters, (Pk)K

k=1 are K
integers such that

∑
k Pk = P and (Ck

p )Pk
p=1 are partitions which define the

segmentations used by the prototypes. This is a clustered version of the measure
proposed in equation (2). It can be optimized via the K means alternating
scheme:

1. initialise the clusters with a random partition

2. for each cluster Gk find a piecewise constant prototype gk with Pk segments

3. assign each function si to the best matching cluster, i.e., the cluster whose
prototype has minimal squared distance to si

4. if the clusters have changed go back to step 2

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.



This simple solution do not automatically allocate resources in an optimal way:
the (Pk)K

k=1 have to be given in advance. Fortunately, dynamic programming can
be used again to remove this constraint. Indeed, for each (Pk)K

k=1, the algorithm
proposed in Section 2 leads to an optimal set of partitions (Ck

p )Pk
p=1. Then, for a

fixed partition of the functions (Gk)K
k=1, the problem is to optimize on (Pk)K

k=1

an additive measure of quality E((Pk)K
k=1) =

∑K
k=1Rk(Pk) with Rk obtained

from equation (3). Let us define S(l, p) has the minimal value of
∑l

k=1Rk(Pk)
with the constraint

∑l
k=1 Pk = p. The S(1, p) are readily obtained from the

optimal segmentation algorithm. Then the additive structure of E shows that
S(l, p) is the minimum over u of S(l− 1, u) +Rl(p−u), where Rl(p−u) is again
obtained via the optimal segmentation algorithm. Given all the Rl(p − u) the
calculation of S(K,P ) has therefore a cost of O(KP 2).

The final clustering and segmentation algorithm is then obtained by replacing
step 2 from the previous algorithm by the following steps:

2.a. for each cluster Gk compute Rl(p) for all 1 ≤ p ≤ P −K + 1

2.b. find the optimal allocation (Pk)K
k=1 via dynamic programming

The total cost of those steps is in O((KP +N)M2 +KP 2). They dominate the
cost of each iteration of the K means algorithm provided M > K which seems
to be a reasonable assumption.

Even if the polynomial cost of this optimal segmentation is reasonable, it can
be quite large compared to the cost of the standard K means applied to functional
data considered as high dimensional vectors (O(MNK) per iteration). As the
K means algorithm find only a local optimum of its cost function, the common
practice is to restart it several times from different random starting points. In
order to speed up our algorithm, we propose the following two phases scheme. In
a first phase, the standard K means algorithm is applied to the si(tl) considered
as vectors from RM . This is done repeatedly to limit the risk of falling in a local
minimum. Then, the best partition obtained this way is used as a starting point
for the complete clustering and segmentation algorithm.

4 Experimental results

The proposed method has been tested on the Topex/Poseidon satellite dataset1.
The Topex/Poseidon radar satellite has been used over the Amazonian basin
to produce N = 472 waveforms sampled at M = 70 points (see, e.g., [3] for
details on this dataset). The curves exhibit a quite large variability induced by
differences in ground type below the satellite during data acquisition. Figure 1
illustrates the results obtained by our method for K = 12 and P = 60 (i.e., in
average 5 segments per cluster). We have used 20 random starting configurations
for the standard K means and selected the best partition as the initial one for
the full clustering and segmentation algorithm.

1Data are available at http://www.lsp.ups-tlse.fr/staph/npfda/npfda-datasets.html
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The differences in segmentation strategies between clusters are obvious and
show that the algorithm allocates resources as expected. Small clusters and
simple ones obtain a simple description while larger or more complex clusters
(e.g., with curves with high variability) get more resources for a more accurate
representation. The final value of the quantization error as defined by equation
(3) is 574 × 103. In the case of a uniform segmentation of each prototype in 5
segments, the error increases slightly to 582× 103. Moreover, using 5 segments
in each cluster fails to show the large differences in complexity of those clusters.

size=99, p=5 size=23, p=3 size=52, p=7 size=25, p=6

size=30, p=5 size=13, p=1 size=27, p=6 size=98, p=7

size=23, p=6 size=31, p=6 size=12, p=3 size=39, p=5

Fig. 1: Results on the Topex/Poseidon dataset with K = 12 and P = 120

5 Possible extensions

While we have focused here on one particular implementation of the clustering
and segmenting idea, it can be implemented in many different ways. It is possible
for instance to replace the quadratic criterion

(
si(tl)− µk

p

)2 by another one, e.g.,
an absolute difference or a maximal squared error on sub-intervals. As long as the
segmentation criterion remain additive, dynamic programming can be used to
obtain an optimal prototype efficiently. This can be used to provide a piecewise
linear prototype, for instance.

Moreover, a greedy approach (based on hierarchical clustering, see e.g. [5])
can be used to provide efficiently a good but suboptimal segmentation when the
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criterion is no more additive (e.g., when the prototype is represented by a cubic
spline). The resource allocation part is also somehow independent from the
segmentation part: as long as the global clustering criterion is additive, optimal
allocation can be done efficiently with dynamic programming. This allows to
use more complex clustering scheme such as neural gas or self organizing maps
in their batch versions.
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