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Abstract. We introduce Augmented Efficient BackProp, a strategy
for applying the backpropagation algorithm to deep autoencoders, i.e.
autoassociators with many hidden layers, without relying on a weight
initialization using restricted Boltzmann machines (RBMs). This training
method, benchmarked on three different types of application datasets, is
an extension of Efficient BackProp, first proposed by LeCun et al. [12].

1 Introduction

An autoassociator is a feedforward neural network, which is trained to map ap-
proximations of input vectors to its corresponding outputs and is distinguished
by a central, low-dimensional bottleneck or coding layer. Such networks have
long been of interest for dimensionality reduction and feature extraction, which
often help reveal underlying patterns in large, high-dimensional datasets [10, 4].

Error surfaces associated with training deep architectures are non-convex
and have many local minima, making gradient-based optimization difficult [3,
11]. This difficulty is particularly pronounced in networks with bottlenecks [1].
Furthermore, backpropagation scales poorly and can be very slow. As a result,
it has often been claimed that the traditional backpropagation algorithm alone
is not of practical interest in the effort to efficiently train deep networks. Our
results suggest otherwise. Erhan at al. [3] note that no good training methods
for deep architectures were known prior to the breakthrough development by
Hinton et al. of an algorithm for deep belief networks [7]. The purpose of this
paper is to introduce a backpropagation-based training strategy that does not
require pre-training using RBMs.

2 Augmented Efficient BackProp

Efficient training of deep autoencoders with multiple constriction layers is an
outstanding research issue. Larochelle et al. [11] state explicitly that, although
not widely reported in the literature, the backpropagation algorithm is empir-
ically known to find poor solutions for networks with three or more hidden
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layers. However, semi-heuristic procedures can be developed, which allow ef-
ficient training of such networks. To establish such procedures, we extend
the guidelines reported in “Efficient BackProp,” introduced by Yann LeCun
et al. [12] and reported in Haykin’s heuristics for improving the backpropaga-
tion algorithm [6]. Through experimentation on numerous large datasets of the
University of California Irvine data repository [15], an efficient approach was
developed. It was found that for fast, efficient, and robust training of neural
networks, the ratios of the learning parameters, from one layer to the next, are
of key importance. Efficient BackProp [12] proposes the following guidelines
for training a multi-layered perceptron by backpropagation:

(i) Use the tanh activation function.
(ii) Standardize (or normalize) the inputs.
(iii) Initialize weights layerwise by choosing uniform random numbers in the

interval [−√
k,
√

k], where k is the number of inputs of the layer.
(iv) Assign smaller learning rates in the latter layers.
(v) Assign smaller learning rates to neurons with many inputs.

We modify this approach for deep autoassociative networks by adding the fol-
lowing procedures sequentially and refer to the expanded guidelines as Aug-
mented Efficient BackProp:

(vi) Initially assign the learning parameter, η, for each layer to be η = 1√
k
,

where k is the number of inputs to neurons of that particular layer.
(vii) Leave the learning parameter for the last layer as is and reduce the

learning parameters of previous layers by
√

2.
(viii)Proportionally scale all learning parameters such that the largest is 1

n ,
where n is the number of training samples in the batch (or the epoch,
when weights are updated after using smaller sets of random samples).

(ix) Apply a momentum factor α to each layer, starting with α = 0.5.
(x) If the network initially converges monotonically, keep the learning par-

ameters constant and continue training. Otherwise, divide all learning
parameters by 2 and restart the training. Repeat this until an initial,
uniform convergence has been established.

(xi) Once the error starts increasing, rather than decreasing, reduce all the
learning parameters by a factor of 2 and increase the momentum, such
that applying 1

1−α increases by a factor of 2.

While (i)-(xi) represent a heuristic approach for choosing reasonable initial val-
ues for the learning and momentum parameters, it can be justified by: (1)
experimentation on a large number of datasets to determine a reasonable es-
timate for (iv) in Efficient BackProp; (2) the observation that a good choice
for a constant learning parameter for most neural networks trained with the
backpropagation algorithm is 1

η , in order to show good initial convergence; and
(3) the fact that when the learning parameter is halved, one should double 1

1−α ,
as reported in [6].
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To establish good initial learning rates for small networks, step (x) typically
leads to division of initial weights by a total factor of eight; i.e., training must
typically be restarted three times. Extensive experimentation has shown that
the procedure usually trains within a few hundred to a few thousand epochs
and is often remarkably efficient for large networks. In general, we trained on
all available samples in one batch. Only when training progressed exceptionally
slowly did we proceed with epoch training, in which 30 samples were selected
at random for each epoch.

3 Benchmarking of Augmented Efficient BackProp

Three datasets are considered for benchmarking the Augmented efficient train-
ing strategy introduced in this paper:

(i) tobacco data, including 26 tobacco samples, with 16 features containing
chemical constituents, for classification as sun-dried or flue-dried tobac-
cos. These data were obtained from [9], in which results for nonlinear
principal components from autoassociators trained using a modification
of the backpropagation algorithm also appear.

(ii) Italian olive oil data, consistsing of 572 samples of olive oils containing
8 fatty acids. Oils in the dataset come from 9 different regions of Italy
[5]. Processing can be considered an example of a multi-class, unbalanced
classification problem. This dataset, too, was previously discussed in the
context of autoassociative neural networks [2].

(iii) toxicity data for small molecules and drug design used in the ICANN 2009
challenge for prediction of the toxicities of drug-like molecules [16, 14].
This dataset includes 1093 training data, 110 test data, and a total of
2223 descriptors. We include this dataset, because it is representative
of a relatively large regression dataset and should pose a challenge for
autoencoders trained by backpropagation.

The literature is vague on how to assess the performance of unsupervised learn-
ing, in general, and deep autoassociative networks, in particular. A meaningful
pair of metrics is the fraction of unexplained variance (FUV) and, correspond-
ingly, the fraction of explained variance (FEV), as defined by [13]:

FEV = 1 − FUV = 1 −
∑m

j=1 var(xj) −
∑m

j=1 var(x̂i)
∑m

j=1 var(xj)

The FEV is a useful metric for establishing the number of neurons that should
be present in the bottleneck, and by evaluating this metric or the root mean
square error (RMSE) on training and validation data, it is easy to implement
an early stopping criterion.
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4 Results

Figure 1 summarizes the outputs of the two bottleneck neurons of various au-
toassociators and qualitatively compares the outputs of the two bottleneck neu-
rons with the first two principal components 1 for the tobacco set.

Fig. 1: Outputs of the two bottleneck neurons of various autoassociators:
(a) PCA, (b) 16x2x16, (c) 16x8x2x8x16, (d) 16x12x8x2x8x12x16, and (e)
6x16x12x8x2x8x12x16x16 for sun-dried (open circles) and flue-dried tobaccos
(filled circles).

Deeper architectures, as seen in Figure 1, tend to separate the tobacco classes
in a more linear fashion. Each network was well-trained within a few thousand
iterations, taking a fraction of a second to a few minutes on a standard laptop
computer with a 1.5 GHz Pentium processor. The trend of the observed results
is consistent with observations reported in [9].

Figure 2 compares outputs of the bottleneck layers of various autoencoders
with PCA for dataset (ii). Again, classes to become more linearly separated
by deeper encoders. These results are consistent with [2]. We include a
large 8x1000x100x10x2x10x100x1000x8 architecture. Networks required be-
tween 1000 and 4000 iterations and trained from within a fraction of a second to
a few minutes on a 1.5 GHz Pentium processor. Table 1 presents performance
metrics for the networks identified in Figure 2: the FUV, the RMSE, and the
required number of iterations.

A 2223x500x100x30x500x100x23 network was trained on the toxicity data
within a few thousand iterations to RMSE = 0.16 and FUV = 0.22, indicating
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Fig. 2: Outputs of bottleneck layers of various autoencoders for the Ital-
ian olive oil data. Regions of origin are represented by different grey-scale
colors: (a) PCA, (b) 8x2x8, (c) 8x6x2x6x8, (d) 8x8x6x4x2x4x6x8x8, (e)
8x100x10x2x10x100x8, and (f) 8x1000x100x10x2x10x100x1000x8 architectures

Network Structure FUV RMSE Iterations
8x2x8 0.30097 0.20154 4000
8x6x2x6x8 0.17269 0.15137 4000
8x6x4x2x. . . 0.13146 0.13771 4200
8x8x6x4x2x. . . 0.11108 0.12559 4200
8x100x10x2. . . 0.13540 0.13820 1500
8x1000x100x10x2.. . 0.11195 0.13079 1240

Table 1: Performance metrics for Italian olive oil data

that the Augmented Efficient BackProp strategy is applicable to larger datasets.

5 Conclusion

We introduced Augmented Efficient BackProp as a training strategy for deep
autoencoders and showed for the first time that deep autoencoders can be
trained efficiently by the backpropagation algorithm alone. The establishment
of good ratios of the learning parameters of the different layers is of prime impor-
tance. Only datasets with much larger numbers of features, such as 128x128 im-
age data, remain a challenge for Augmented Efficient BackProp, driving neuron
outputs into saturation. While adjustments will be required for such datasets,
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there is hope that fine-tuning can be calibrated using a design-of-experiments
approach.
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