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Abstract. A kernel version of Generative Topographic Mapping, a
model of the manifold learning family, is defined in this paper. Its ability
to adequately model non-i.i.d. data is illustrated in a problem concerning
the identification of protein subfamilies from protein sequences.

1 Introduction

Manifold learning models attempt to describe multivariate data in terms of low
dimensional representations, usually in order to achieve an intuitive visualization
of high dimensional data. Visualization may help in the exploratory stages of
data analysis. Generative Topographic Mapping (GTM) [1], whose probabilis-
tic setting and functional similarities make it a principled alternative to Self-
Organizing Maps (SOM) [2], is a model of this family defined for the clustering
and visualization of i.i.d. data. Although several variants have been developed
for various types of data (e.g., [3, 4]), GTM lacks the ability to handle more
structured data, such as strings, trees, or graphs.

Kernelization is a method originally defined for Support Vector Machines
(SVM). It has been pointed out that it could be used to develop generaliza-
tions of any algorithm that could be cast in dot product terms. Recent years
have witnessed the development of models such as Kernel Principal Components
Analysis (KPCA) [5], Kernel Fisher Discriminant Analysis (KFDA) [6], or ker-
nel SOM [7], amongst others. The idea is that a method formulated in terms
of kernels can use the one that best suits the problem and data type at hand.
With this purpose, we define kernel-GTM (KGTM). It takes advantage of the
original GTM functionalities to achieve clustering and visualization of a wider
variety of data types. The capabilities of KGTM are first illustrated through
experimentation with artificial data. The model is then applied to a problem
concerning the clustering and visualization of protein sequences.

*This research was partially supported by Catalan La Maraté de TV3 Foundation project
070530 and Spanish MICINN projects TIN2009-13895-C02-01 and SAF2007-65913.
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2 Background

2.1 The Original GTM

The neural network-inspired GTM is a nonlinear latent variable model of the
manifold learning family, with sound foundations in probability theory. It per-
forms simultaneous clustering and visualization of the observed data through
a nonlinear and topology-preserving mapping from a visualization latent space
in R’ (with £ being usually 1 or 2 for visualization purposes) onto a manifold
embedded in the RP space, where the observed data reside. The mapping that
generates the manifold is carried out through a generalized regression function:

y =W¢(u) (1)

where y € P, u € R, W is the matrix that generates the mapping, and ¢
is a vector with the images of § basis functions ¢s To achieve computational
tractability, the prior distribution of u in latent space is constrained to form a
uniform discrete grid of M centres, analogous to the layout of the SOM units,
in the form of a sum of delta functions u = 7 Z%Zl ou — uy,.

This way defined, the GTM can also be understood as a special case of
a Gaussian mixture model that is adapted to provide high-dimensional data
visualization. Each component m in the mixture defines the probability of an
observable data point x given a latent point u,, and model:

pcinn @) = (L) e {2 vt} )

where y,, = W¢ (u,,,). The set of adaptive parameters © is constituted by W
and the common inverse variance 8. A density model in data space is therefore
generated for each component m of the mixture, which, assuming that the ob-
served data set X consists of N independent, identically distributed (i.i.d.) data
points x,,, leads to the definition of a likelihood in the form:

N 1 M
(W, 8) =[] 37 2 »(xnltm, W, ) (3)

The adaptive parameters of the model are usually optimized by Maximum
Likelihood (ML) using the Expectation-Maximization (EM) algorithm [8]. De-
tails can be found in [1].

2.2 The kernel trick

Kernelization was originally devised for SVM. The idea is that observed data X
can be implicitly mapped into a high-dimensional feature space H via a nonlinear
function: x — ¢ (x). A similarity measure can then be defined from the dot
product in space H as follows:

K (x,x) = (¥ (x), ¢ (x)) (4)
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K is a kernel function that should satisfy Mercer’s condition [9]. It allows
us to deal with learning algorithms using linear algebra and analytic geometry.
In general, this method deals with data in the high-dimensional dot product
space H, usually known as feature space. This use of the feature space avoids
expensive computation costs by employing the kernel function K instead of
directly computing the dot product in H.

3 Kernel Generative Topographic Mapping

The kernelization of GTM can be implemented by redefining Eq. 2 in feature
space as

P00 = (2) en{ Lo vt}

Note that the prototypes y,, are now defined in the feature space and not in
data space, as originally. Consequently, D is now the dimension of the feature
space, which is usually unknown. In most cases, the term ||t (x) — ym||® cannot
be directly evaluated, given that the function ¢ (-) is usually unknown. However,
this term can be also expressed as follows:

9 (%) = yml® = (1 (%), 9 (X)) + (Y Yim) — 2 (8 (%), ¥m) (6)

Here, we assume that, as in KPCA, y,, can be expanded on the training data
in the feature space. That is, y,, = Pw,,, where ¥ is a D x N-matrix of
vector columns ¥ (x,), n=1...N, and w,, a weight vector. With the aim of
preserving the topology, we correlate the weight vector to the latent space by
wm = Ag,,, where A is an adaptative weight matrix and ¢,, = ¢ (u,,) is the
set of radial basis functions typically used by GTM. Therefore, Eq. 6 becomes:

1% (%) = Yull” = Jin = Ko + (Ag,,)" KA),, — 2k, A, (7)

where K is a kernel matrix with elements K, = (¢ (x5,),% (x,,/)), and row
vectors k. Thereby J,,, is expressed in terms of the kernel matrix, making the
definition of function  (-) unnecessary. The adaptive parameters of the model
are now A and (3, which can be optimized by ML using EM, as in GTM. The
likelihood of the model is formulated as follows:

N 1 M
£ =11 57 2 » (¥ (x0) [um. A B) (8)

Following the usual EM algorithm, the expectation step proceeds with the
estimation of the posterior distribution Ry, = p (wn|Y (x,), A, 5) as:

p(¢ (Xn) ‘uma A7B)
SN p (% (x0) [, A, B)

Rpyn = 9)
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R,,» measures the degree of responsability of a point u,, in the latent space for
the generation of a 9 (x,,) point in the feature space. In turn, each R,,, is an
element of a M x N responsability matriz R.

In the maximization step we use Eq. 8 as the optimization function to
determine the parameters A and S, which results in the following expressions:

AT = (@TG@)_I 3"R (10)
1 1 N M
n=1m=1

Starting with a random initialization of these parameters, steps E and M of EM
are sequentially repeated until convergence of the likelihood function is reached.

4 Experiments

4.1 Artificial dataset

A first experiment was carried out to preliminary assess the differential ability
of KGTM to faithfully represent and visualize data. For that, an artificial data
set consisting of two spirals, as displayed in Figure 1(a), was generated. The
projections of these data in the latent spaces of GTM and KGTM are, in turn,
shown in Figure 1(b) and Figure 1(c). KGTM was implemented using a Gaussian
kernel and it is shown to capture the inherent structure of this dataset far better
than the standard GTM.
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Fig. 1: (a) Plot of the artificial dataset; (b) projection of dataset produced by
GTM using the mean projection of data: Wmeqn = Zn]\le Rpnuy; (¢) mean
projection of the data, now using the proposed KGTM. In all plots, each of the
spirals is represented by different symbols: '+’ and ’o’.

4.2 Protein subfamily visualization using protein sequences

Protein classification in families is a frequent problem in bioinformatics. To date,
many protein sequences remain orphans, meaning that they do not belong to any
particular family and thus its function is unknown. A particular type of proteins
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are the G-protein coupled receptors (GPCR) , traditionally divided into three
big families (usually named A, B and C) and, in turn, into subfamilies. They
represent nearly half of the current market for therapeutic agents and remain a
primary focus of many biomedical research and drug discovery programs.

For illustration, we have designed an experiment to model the family C of
GPRCs only, using KGTM to explore its subfamilies (7 in total) through vi-
sualization in the latent space. The dataset consists of 232 protein sequences
obtained from GPCRDB!. Each position in a sequence is called a residue, which
in turn may be one of 20 possible amino acids. Each amino acid has a standard
one-letter code, thus a protein is represented by a sequence of these letters. The
number of residues by protein sequence in the dataset is 253.

A key issue in this problem is the design of an appropriate kernel function
for measuring protein sequences similarities. We designed a kernel funtion based
on the mutations and gaps between the sequences, which takes the form:

/ 7 (z,2')
K (z,z") _peXp{Vﬂ-(x,x)+7r(x’,x’)} (12)
where 2 and z’ are two sequences, and p and v are prefixed parameters ; 7 (-)
is a score function, commonly used in bioinformatics and expressed as follows:
T (x,2") =3, s (x,,z].)—7, where z,. and 2. are the r*" residue in the sequences.
The value of s (z,,]) can be found in a mutation matrix [10] and ~ is a gap
penalty (usually the number of gaps in sequences). This kernel function could
be seen as a symmetric version of asymmetric bio-basis functions [11], which are
not suitable for applying Mercer’s theorem.

1 o o o o + v
°
6 8 08 o v
o
4 ] 06 e
04
s o o o °
02
o s o
2
0 0
# s o o o ©
s 02
- °
-04 o
4 > %‘ osl B B S a v
6 s 08 >o® vV
»
it > * e+

Fig. 2: Protein sequence visualization using (a) KPCA and (b) KGTM. Each of
the GPCR subfamilies is coded in the map using different symbols.

Visualization results for KGTM are shown in Fig. 2 and compared to those
obtained using the 1% and 2" principal components of a Kernel PCA model.
The map produced by KPCA does not capture the structure of the data in a
way that allows us to differentiate between GPCR subfamilies. Instead, KGTM
provides a far more clear separation between subfamilies, which can be better
appreciated in the maps of Fig. 3. Here, the data are visualized in the latent

LGPCRDB web site: http://www.gpcr.org/7tm/
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space using the mode-projection, which is defined as: My o4 = argmax Ry,,.

Each subfamily occupies a rather differentiated area on the map, shon\?ving little
overlapping. Future research should qualify KGTM capabilities using a wider
variety of artificial data. A more thorough quantitative analysis of the protein
subfamily characterization problem should also be carried out.
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Fig. 3: Data visualization using a mode-projection. Left) Pie charts represent
latent points, and their size is proportional to the ratio of sequences assigned
to them. Each portion of the charts corresponds to the percentage of sequences
belonging to each subfamily, which are color-coded in shades of gray. Right)
Same map without scaling, for better visualization.
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