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Abstract. In this paper, we present a generic way to use a hierarchical
representation of prediction models for adaptive tracking. Starting with a
basic appearance-based tracker working in 2D retinal space, we show how
to combine individual trackers for the left and right eye to a true 3D tracker
that is built on top of the 2D trackers. We show how the trackers benefit
from the hierarchical structure by dynamical model switching depending
on the reliability of the tracking results.

1 Introduction

Visually tracking a target object means to estimate the state of the target com-
prising, e.g., its position, velocity and acceleration. Tracking arbitrary targets in
a complex environment, the system has to deal with different challenges, like a
temporally varying appearance of the target, confusion of the target with other
objects and irregular motion of the target, just to mention some of them.

In Bayesian manner (e.g. [1]), tracking is formulated as an iterative process
which consists in first predicting the hypothetical future state of the target and
afterwards in measuring the evidence of a target’s existence on the predicted
state in order to confirm or reject the hypothesis. Beside the challenge of ro-
bustly measuring the target’s state based on the sensory input, another core
challenge consists in how to make the prediction more reliable. The best sensory
measurement does not help, if the prediction is incompatible with the object
dynamics. Since the motion of an arbitrary target can be of different types, a
single kinematic prediction model may not be sufficient to follow an arbitrary ob-
ject in all situations. To alleviate this problem, modern tracking approaches use
multiple prediction models and switch between them during runtime, depending
on the performance of each model. This kind of approach is called hybrid state
estimation ([2]) or interacting multiple model ([3] [4] [5]). The prediction models
inside of a tracker are applied in parallel to the same state and compete with
each other. In a sense, they stand on the same hierarchical level.

However, alternative prediction models must often be expressed at different
abstraction levels. This paper introduces a novel approach to incorporate models
from a prediction model knowledge hierarchy into a dynamic Bayesian tracking
framework. It proposes a generic way for constructing and making use of such a
hierarchy of prediction models composed of arbitrary stages. The gain of such
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Fig. 1: This figure illustrates the working principle of a hierarchy of tracking
modules with a unified design. Each module comprises an interacting multiple
model particle filter mixing two groups of predictions, one (ρj (Xk|z1:k−1) with
j ∈ Ω1) coming from the intrinsic prediction models ρ (xk|xk−1, j) and one
(ρi (Xk|z1:k−1) with i ∈ Ω2) from the projected parental predictions.

a hierarchical prediction structure relies on the explicit usage of the top-down
influence of the hierarchy. Lower-level prediction models benefit from the pre-
diction arising at higher levels, where the prediction is more powerful, e.g. based
on a higher-dimensional state or a more specific model. The bottom-up influ-
ence is important for the construction of higher-level prediction models, because
these are based on the state estimations gained by the lower-level prediction
models. The method introduced in this paper provides a straightforward way of
adaptively managing the top-down and bottom-up influences.

In a practical experiment, we demonstrate how a hierarchy of two 2D trackers,
one for the left and one for the right eye, and one 3D tracker for coupling both 2D
trackers, successfully tracks a target on a 3D elliptic curve in space by mixing 2D
and 3D prediction influences and by autonoumously adjusting the contributions
of the mixture. For comparison, we show how the single 2D trackers with the
same 2D kinematic prediction models can not accomplish this task.

2 Hierarchical Prediction Structure

We propose to describe the prediction models of the hierarchical prediction struc-
ture in form of a directed acyclic graph (DAG) where tracking modules contain-
ing a description of the prediction models are the nodes and dependency links
between the modules are the edges of the DAG.

The tracking modules in such a hierarchy have a generic unified design, as
illustrated in Fig. 1. It fuses local prediction with that of the parental track-
ing modules and provides its estimated state as measurement to the parental
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tracking modules. For the prediction fusion, such a tracking module consists of
an interacting multiple model (IMM) particle filter for switching between the
local prediction models and the prediction which is projected downwards from
that of the parental tracking modules into the state space of the current module.
Thus, the state the IMM particle filter has to estimate is Xk = {xk,mk} with
the part xk as the kinematic state and the part mk as the model affiliation. The
prediction (1) and confirmation (2) process is carried out according to

ρ (Xk|z1:k−1) =
∫

ρ (Xk|Xk−1) ρ (Xk−1|z1:k−1) dXk−1 (1)

ρ (Xk|z1:k) ∼ ρ (zk|Xk) ρ (Xk|z1:k−1) (2)

to obtain the posterior probability density function (pdf) ρ (Xk|z1:k) and the
prior pdf ρ (Xk|z1:k−1) in each frame k, with zk being the sensory measurement
at frame k. z1:k = {z1, . . . , zk} is the set of all measurements from frame 1
until frame k. Assuming the independency of mk on xk and of xk on mk−1 but
dependency of xk on mk, we factorize the prediction model

ρ (Xk|Xk−1) ≈ ρ (xk|xk−1,mk) · ρ (mk|mk−1) . (3)

Inserting (3) into (1), we obtain

ρ (Xk|z1:k−1) =
M∑

mk=1

∫
ρ (xk|xk−1,mk) ρ (mk|mk−1) ρ (Xk−1|z1:k−1)︸ ︷︷ ︸

ρ(xk−1,mk|z1:k−1)

dxk−1

︸ ︷︷ ︸
ρmk

(Xk|z1:k−1)

(4)
as a two-stage prediction scheme, where the transition model ρ (mk|mk−1) first
decides which kinematic prediction model is to be taken and then the kinematic
prediction model ρ (xk|xk−1,mk) is used to predict the new kinematic state. Fi-
nally all predictions ρmk

(Xk|z1:k−1) are summed up. Here, M is the number of
all kinematic models of this module. A subset of them, Ω1, are predictions gained
by own prediction models and the rest, subset Ω2, are downwards projected pre-
dictions from the parental tracking modules. The transition model ρ (mk|mk−1)
is usually a matrix containing transition probabilities from one kinematic model
to another.

This IMM particle filter framework automatically chooses the influences of
the models by re-weighting the predicted particles of ρmk

(Xk|z1:k−1), depend-
ing on their reliability. This occurs by evaluating them according to (2) with
the likelihood ρ (zk|Xk) which is gained by a comparison between the expected
measurement h(xk) and the sensory measurement zk, according to

ρ (zk|Xk) ∼ exp
(
− 1

2πσ2
‖h(xk) − zk‖2

)
. (5)

Tracking modules on the lowest level of the hierarchy get the zk directly from
their sensory measurement. For parental modules, the measurement zk is de-
livered by the state(s) estimated by the child modules. In this case, h(·) is a
projection function from the parental state into the child state.
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In addition, the prediction ρ (Xk|z1:k−1) is projected downwards according
to h(·) and delivered to the child tracking modules as ρi (Xk|z1:k−1) with i ∈ Ω2.

In such a hierarchical prediction framework, each module is functionally
a stand-alone tracker which provides/receives contributions to/from its par-
ent/child tracking modules. Higher-level and lower-level tracking modules are
connected as illustrated in Fig. 1. In doing so, an adaptive self-organisation of
top-down and bottom-up influences arises:

• top-down: parent tracking modules provide their priors to their child track-
ing modules to support them from a higher-dimensional, more specific
view. In case of an unreliable parental prediction, the child tracking mod-
ules automatically turn towards their intrinsic prediction and so proba-
bilistically switch off the influence of parents.

• bottom-up: child modules communicate their estimated states xk as mea-
surement to their parent modules for the calculation of the likelihood
ρ (zk|Xk), providing a grounding on lower-level estimations.

3 Adaptive 2D-3D Tracking System

In this section, a very simple system applying the method explained in section 2
to build up a hierarchical prediction framework is introduced. It comprises a
mixed 2D-3D tracking system, consisting of two 2D trackers and one 3D tracker.
In order to evaluate their prediction, we assume that the two appearance-based
2D trackers ([6]) for individually tracking a target in left and right eyes are
directly connected to a sensory system which measures the “true“ position of
the target, however subject to white noise. Their prediction-confirmation process
is implemented using an IMM particle filter with a prediction from an intrinsic
2D linear kinematic prediction model and a downwards projected prediction
from its parent tracker - the 3D tracker. Each of the 2D trackers relies on a
particle filter for estimating a 6-dimensional state vector (position, velocity and
acceleration in x, y-directions) and provides its estimated state to the 3D tracker
as measurement. The third tracker, for tracking the target in true 3D space, is
set up on top of the two 2D trackers in the hierarchy in such a way, that it
uses the estimated states from both 2D trackers to calculate the likelihood for
its own particle filter. In addition, it provides its prediction, which is obtained
by an intrinsic 3D linear kinematic prediction model, to support the prediction
of the two 2D-trackers. The 3D tracker relies on a particle filter for estimating
a 9-dimensional state (position, velocity and acceleration in x, y, z-directions).

For showing the gain of the hierarchical prediction structure, we use a target
object which is flying in an elliptic curve (see Fig. 2 a)) in 3D space within 30
frames with a constant angle velocity, and that is tracked in the left and right eyes
using the two 2D trackers. Whereas in 3D the target is moving in a more and less
regular curve, which can be covered well by the 3D linear kinematic prediction
model of the 3D tracker, in 2D it exhibits a strongly accelerated trajectory,
which makes it impossible for the intrinsic 2D linear kinematic prediction models
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of the 2D trackers to follow the target. So, both 2D trackers lose the target
in stand-alone mode without support from the 3D tracker as shown in Fig. 2
f) and g). Allowing the support of the 3D tracker in form of the downwards
projected prediction, both 2D trackers can cope with the strong acceleration
in 2D, as shown in Fig. 2 b) and c). Because in 3D the motion is regular, in
situations where the 2D trackers’ intrinsic prediction is getting inconsistent with
the measurement, it automatically switches over to the downwards projected
prediction from the 3D tracker, as shown in Fig. 2 d) and e). With increasing
depth the precision of the 3D estimation decreases, as shown in Fig. 2a). In
this case, the intrinsic 2D linear kinematic prediction models of the 2D trackers
dominate again.

4 Conclusion

In this paper, we presented a generic approach for building up a hierarchy of
prediction models for tracking purposes. It describes an adaptive manner of dis-
tributing bottom-up information from child tracking modules to parent tracking
modules and top-down information in a reciprocal way. Grounding on this princi-
ple of construction, the size of the hierarchy is open. The scheme of construction
may come from a knowledge base for prediction models. Nevertheless, this type
of hierarchies remains simple to control, since the direct communication only
exists between parent and child tracking modules.

In an experiment in section 3 we confirmed the gain of such a hierarchi-
cal prediction structure. The tracking results of both lower-dimensional child
tracking modules allow an existence of the higher-dimensional parent tracking
module. In turn, the higher-dimensional parent tracking module provides its
contribution to the child tracking modules to make their tracking more reliable.
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Fig. 2: This figure shows the results of the hierarchical mixed 2D-3D tracking.
a) shows the ground truth and estimated 3D positions of the target, with frame
numbers at the trajectory. The spheres show the standard deviations of the
estimated state at each frame. b) and c) show the ground truth and estimated
2D positions of the target in the left and right eyes in the mixed mode. d) and e)
show the influence of both intrinsic and projected prediction models during the
tracking process in the left and right side 2D trackers. 0 indicates the instrinc
2D linear kinematic prediction model and 1 the downwards projected prediction
of the 3D linear kinematic prediction model of the 3D tracker. For comparison,
f) and g) show the tracking results of the left and right eye 2D trackers, without
the support from the higher-level 3D tracker.
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