ESANN 2010 proceedings, European Symposium on Atrtificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

Deep Learning of Visual Control Policies

Sascha Lange and Martin Riedmiller

University of Freiburg - Dept of Computer Science - Germany

Abstract. This paper discusses the effectiveness of deep auto-encoding
neural nets in visual reinforcement learning (RL) tasks. We describe a
new algorithm and give results on succesfully learning policies directly on
synthesized and real images without a predefined image processing. Fur-
thermore, we present a thorough evaluation of the learned feature spaces.

1 Introduction

The dimensionality of the state space has always been critical to the success
of applying Reinforcement Learning [1] to a given task. Present algorithms are
typically restricted to state spaces of low dimensionality, pushing an applica-
tion directly to visual input—e.g. raw image data as captured by a camera—
completely out of scope. Usually, the original task of learning a policy given
high-dimensional images is split into two separate processing stages (see fig. 1).
The first is for extracting and condensing the relevant information into a low-
dimensional feature vector and the second for learning a policy on this particular
encoding, keeping the feature space fixed. This is exactly the setting where we
see a big potential for deep auto-encoding neural nets [2] replacing hand-crafted
preprocessing and more classical learning in the first “sensing” stage.

classical solution: low-dimensional
Feature Space

Reinforcement
Learning

image processin

here: deep auto-encoders Action

Visuomotor Learning

Fig. 1: Classical decomposition of the visual reinforcement learning task.

In this paper, we propose to integrate deep auto-encoders directly into RL-
algorithms where they can help by automatically reducing the dimensionality of
the visual input using unsupervised learning. The combination with memory-
based batch RL [3, 4] in the new DFQ-algorithm promises outstanding data-
efficiency, making optimal use of observations, introducing only little overhead.
The sparse representations constructed by deep learning (DL) form the basis for
applying RL and as such, their quality also influences the quality of resulting
policies. Hence, this paper offers a thorough empirical evaluation of the proper-
ties of the automatically constructed feature spaces as a main contribution.

Related Work Instead of using Restricted Boltzmann Machines during the
layer-wise pretraining of the deep auto-encoders [2] our own implementation re-
lies on regular multi-layer perceptrons, as proposed in chapter 9 of [5]. Previous
publications have concentrated on applying deep learning to classical face and

265

ESANN 2010 proceedings, European Symposium on Atrtificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

letter recognition tasks [2, 5]. The RL-tasks studied here also add the complexity
of tracking moving objects and encoding their positions adequately.

[3] was the first attempt of applying model-based batch RL directly to
(synthesized) images. Following the classical decompositional approach, in [6]
Jodogne tried to further integrate the construction of feature spaces into RL but
succeeded only in learning the selection—not the extraction—of the features.
Both [3, 6] lacked realistic images, ignored noise and just learned to memorize a
finite set of observations, not testing for generalization at all.

2 RL on image data: Deep Fitted Q-Iteration

In the general reinforcement learning setting [1], an agent interacts with an
environment in discrete time steps ¢, observing some markovian state s; € S
and reward r; to then respond with an action a; € A. The task is to learn a
stationary policy 7 : § — A that maximizes the expectation of the discounted
sum of rewards R; = Ziio ~treyp1 with discount factor v € [0,1]. A standard
solution is learning the optimal g-function Q*(s,a) = E[R|s; = s,a; = a] that
specifies the expected reward when always selecting the optimal action starting
with ¢t + 1 and then deriving the optimal policy 7* by greedy evaluation [1].

In the tasks considered here, the learner does not know anything about the
system state but only observes a high-dimensional image o; € [0,1]¢. The ob-
servations o; are assumed to be markov'. The new idea followed here is to
integrate the unsupervised training of deep auto-encoders into Ernst’s fitted
g-iteration (FQI) [4] in order to obtain an encoding of the images in a low-
dimensional feature space. Due to space limitations, we will only briefly discuss
the basic version of the new algorithm “deep fitted g-iteration” (DFQ) and may
refer the reader to [7] for a more thorough treatment of batch RL in general.

A. Initialization Set k < 0. Set p «— 0. Create an initial (random) exploration
strategy 7° : z — a and an inital encoder ENC : 0 0 z with (random) weight
vector WP, Start with an empty set Fo = @ of transitions (0t, at, 41, 0t41)

B. Episodic Exploration In each time step t calculate the feature vector z; from
the observed image o: by using the present encoder z; = ENC(ot;Wk). Se-
lect an action a; «— 7*(z;) and store the completed transition Fo «— Fo U
(0p, ap, Tp+1,0p+1) incrementing p with each observed transition.

C. Encoder Training Train an auto-encoder on the p observations in Fo using re-
silient propagation during layer-wise pretraining and finetuning. Derive the en-
coder ENC(-; W**1) (first half of the auto-encoder, see [2]). Set k « k + 1

D. Encoding Apply the encoder ENC(o; W*) to all (o¢, a¢,rt+1,0t41) € Fo, trans-
fering the transitions into the feature space Z, constructing a set Fz =
{(Zt, at,’r’t+17Zt+1)‘ t= 1, e 7p} with Zy = ENC(Ot, Wk)

E. Inner Loop: FQI Call FQI with Fz. Starting with an initial approximation
Q%z,a) = 0 VY(z,a) € Z x A FQI (details in [4]) iterates over a dynamic
programming step creating a training set P = {(z¢, as; @[t = 1, ..., p} with

1This does hold for a system that generates different observations o for exactly the same
state s (e.g. due to noise) but never produces the same observation for two different states.

266

ESANN 2010 proceedings, European Symposium on Atrtificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

(j,f'“ = T¢+1 + YyMaXarca Qi(th, a’) and a supervised learning step training a

function approximator on P**!, obtaining the approximated Q-function Q***.

F. Outer loop If satisfied or if running in pure batch mode without recurring ex-
ploration, return approximation @, greedy policy 7 and encoder ENC(o; wk).
Otherwise derive an exploration strategy 7* from Q° and continue with step B.

In the outer loop, the learner uses the present approximation of the g-function
to derive a policy—e.g. by e-greedy evaluation [1]—for collecting further expe-
rience. In the inner loop, the agent uses the present encoder to translate all
collected observations to the feature space and then applies FQI to improve
an approximation of the q-function. Each time a new encoder ENC(-; Wk+1)
is learned in C, thus the feature space is changed, the approximation of the
g-function and the derived policy become invalid. Whereas online-RL would
have to start calculating the g-function completely from scratch, in the batch
approach the stored transitions can be used to immediately calculate a new
g-function in the new feature space, without any further interaction.

When using an averager [3] or kernel-based approximator [8] for approxi-
mating the g-function, the series of approximations {Ql} produced by the FQI
algorithm—under some assumptions—is guaranteed to converge to a g-function
Q that is within a specific bound of the optimal g-function Q* [4, 8]. Since
the non-linear encoding ENC : O — Z does not change during the inner loop,
these results also cover applying the FQI algorithm to the feature vectors. The
weights of the averager or kernel theoretically can be adapted to include the
non-linear mapping as well, as the only restriction on the weights is summing
up to 1 [3, 8]. The remaining problem is the bound on the distance ||Q* — Q||oo
[8] that—Dby “hiding” the encoding in the weights—becomes dependent on the
particular encoding. Since, there are no helpful formal results on the properties
of the feature spaces learned by DL, the best to do is an empirical evaluation.

3 Results

We evaluated the algorithm on a continuous grid-world problem using synthe-
sized images (see fig. 2). Instead of the internal system state (z,y) € [0,6)2, the
agent receives only a rendered image with 30-pixels and added gaussian noise
N(0,0.1). Due to the discrete nature of the pixels, the number of possible agent
positions is limited to 900. Each action moves the agent 1m in the selected
direction. The task of reaching the goal has been modeled as a shortest-path
problem [1], with a reward of -1 for any transition outside the goal area.

After testing several topologies on a set of 3100 evenly-distributed training
images and as many testing images, we have selected a rather huge auto-encoder
with 21 layers in total and receptive fields? of 9 x 9 neurons in the four outermost
layers, otherwise being fully connected between adjacent layers. This net with
more than 350000 weights achieved the best reconstruction error (RE, mean

2The method of connecting only a number of neighbouring neurons to a neuron of the
subsequent layer has some motivation in biology and dates back at least to the neocognitron.

267

ESANN 2010 proceedings, European Symposium on Atrtificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

0123456

o[e L T

1 Wl [Gl4Tarea 1

2 |walls reconstr.

W (W |W
3 N P noisy Z
4 W A system state NO.0.1) observ. 4
AP 2 0.
o Logen” S RO e o0 |

Fig. 2: Continous grid-world experiment with synthesized images.

square error per image) of 7.3 on the testing set producing (visibly) correct
reconstructions. Worthy to note, a net with all layers fully connected—as Hinton
successully used on the 60000 MNIST images [2]—achieved only a worse RE of
9.8 on the grid-world images.

More interesting than the reconstructions is the quality of the 2-dimensional
feature space produced by the encoder part of the auto-encoder, since the feature
vectors z will be the basis for learning policies. Within DL, there seem to be
two established methods for assessing feature spaces; first, a visual analysis and
second, training classifiers on the feature vectors [2, 5]. We used both methods
keeping three criteria in mind that would directly affect the quality of learned
policies: A) different agent positions must be distinguishable, B) the robustness
to image noise, and C) the support for generalizing among similar states.

The feature space of the encoder is depicted in figure 3. The same color has
been used for marking all feature vectors residing in the same tile, arbitrarily
superimposing a 6 x 6 tiling on the grid-world. Of course, these labels are not
available during training and are later added for visualtization purposes only.
As can be seen, the feature vectors of positions in the same tile reside close to
each other (criterion C), forming clearly visible clusters throughout the whole
feature space, with sharp boundaries and almost no overlap, giving hint to a low
sensitivity to image noise (criterion B). When compared to the results of a PCA
(fig. 4), obviously, the PCA produces much more overlap and completely fails to
properly encode the agent’s position in its first two principal components (PC).

In another experiment, a neural net with two hidden layers was trained using
the feature vectors as inputs and class labels corresponding to a numbering of
the previously used tiling as targets. The classification error (CE) on the feature
vectors of the testing images was 19.90% (“CE fixed” in tab. 1). Less than 1% of
the false-classifications were more than 1 cell wrong (criterion A). If the gradient
of the classification error was backpropagated in the encoder net (“CE adaptive”
in tab. 1), also adapting the encoder’s weights slowly (see [2]), the CE of the
combined net could be reduced to an impressive 0.54%.

Although the results so far are promising, there still remains the problematic
size of the training set. 3100 images corresponds to 4 samples for each possible
position of the agent. This is still too much for an efficient integration into
RL. Especially in the beginning, there are only few observations available—
seldomly evenly distributed. As can be seen in row A of table 1, the RE and

268

ESANN 2010 proceedings, European Symposium on Atrtificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

Table 1: Reconstruction errors (RE) and classification errors (CE) for differnt
sizes of the training set Row A: receptive fields. Row B: convolutional kernels.
For comparison reasons: results of a PCA in the last column (using 2 PCs).

Samples — 155 465 775 1550 3100 3100
RE 27.58 18.9 12.0 9.4 7.3 15.80
A CE Fixed 75.48% 62.69% 40.39% 38.58% 19.90% || 60.42%
CE Adaptiv | 74.19% 59.14% 19.13% 8.41% 0.54% -
RE 12.38 9.42 7.8 7.6 6.8 -
B CE Fixed 36.13% 28.17% 17.29% 17.03% 11.23% -
CE Adaptiv | 35.48% 12.25% 7.61% 0.13% 0.0% -

after pretraining 20 epochs 40 epochs 400 epochs

200 epochs

Fig. 3: Evolution of the feature space during finetuning the auto-encoder.

4 10 100

“”‘PCTHI'I"E%
H K Iﬂlﬂlﬂlﬂlﬂﬂ

DL Orig

Fig. 4: Eigenimages of some PCs found by PCA (top row) and reconstruction
of the original image (“Orig”) when using the n first PCs or DL (left of Orig).

CE quickly degrades when the number of samples is further reduced. For those
small training sets, the results can be greatly enhanced by using weight sharing
and convolutional kernels replacing the (independent) receptive fields [9] (row
B). Even in the case of only 155 random distributed training samples (that is a
covering of the possible agent positions by only 20%) the CE of < 40% is better
than the result of the receptive fields when training on a 100% covering.

Learning a policy We started the DFQ-algorithm from scratch and let it learn
a policy by interacting with the grid-world. Every few episodes a new encoder
was trained in the outer loop, using 9 x 9 convolutional kernels. The g-function
was approximated using a regular-grid approximator with 20 x 20 cells. The
best policy within 500 episodes (maximal length of 20 steps, 3795 steps in total)

269

ESANN 2010 proceedings, European Symposium on Atrtificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

achieved an average reward (AR) of —5.42, what is within half a step of the
optimal policy. During the last 100 episodes the AR was very stable (o = 0.01).

Finally, we repeated the same experiment with a real image-formation pro-
cess: the grid-world was plotted on a computer monitor and captured in real-
time (10 Hz) using a video camera. DFQ received a sub-sampled version (40 x 30
pixels, no smooting) of the captured QVGA-image and had to handle real im-
age noise, slight barrel distortion and non-uniform lighting conditions. After
44 episodes the learned policy reached the goal from 50% of the tested starting
states collecting an average reward of —11.53. The best policy (episode 492) had
an AR of —5.53, only slightly below the simulation.

4 Discussion

We have presented the new DFQ algorithm for efficiently learning near-optimal
policies on visual input. The evaluation of the feature spaces has shown deep
auto-encoders being able to adequately extract and encode relevant information
in a basic object tracking task, where linear methods like PCA fail. The learned
feature spaces form a good basis for applying batch RL. For overcomming the
problem of few, unevenly distributed obseravtions during the beginning of the ex-
ploration, we introduced the usage of convolutional kernels in the auto-encoders.
To our knowledge, this was the first presentation of succesfully applying RL to
real images without hand-crafted preprocessing or supervision. An open prob-
lem that has not yet been discussed is how to handle dynamic systems, where
velocity—that can not be captured in a single image—is important. One idea
is to use not only the present feature vector as basis for learning the g-function,
but to also include the previous feature vector or the difference between them.
First results on applying this to a real slot car racer have been very promising.

References

[1] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

[2] G.E. Hinton and R.R. Salakhutdinov. Reducing the Dimensionality of Data with Neural
Networks. Science, 313(5786):504-507, 2006.

[3] G. Gordon. Stable Function Approximation in Dynamic Programming. In Proc. of the
12th ICML, pages 261-268, 1995.

[4] D. Ernst, P. Geurts, and L. Wehenkel. Tree-Based Batch Mode Reinforcement Learning.
Journal of Machine Learning Research, 6(1):503-556, 2006.

[5] Y. Bengio. Learning deep architectures for AI. Technical Report 1312, Dept. IRO, Uni-
versite de Montreal, 2007.

[6] S. Jodogne and J.H. Piater. Closed-Loop Learning of Visual Control Policies. Journal of
Artificial Intelligence Research, 28:349-391, 2007.

[7] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange. Reinforcement learning for robot soccer.
Autonomous Robots, 27(1):55-73, 2009.

[8] D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine Learning,
49(2):161-178, 2002.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proc. of the IEEE, 86(11):2278-2324, 1998.

270

