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Abstract. Data denoising can be achieved by approximating the data distribution
and replacing each data item with an estimate of its closest mode. This idea has
already been successfully applied to image denoising. The data then consists of
pixel intensities or image patches, that is, vectorized groups of pixel intensities.
The latter case raises the issue of mode estimation in a high-dimensional space,
since patches can contain about 10 to more than 100 pixels. This paper shows
that the widely used Gaussian kernel is outperformed by flat-top kernels that are
specifically tailored in order to fight the curse of dimensionality.

1 Mode Estimation

Starting from a data sample, mode estimation can be achieved by first approximating
the underlying data distribution. Next, a hill-climbing procedure can be run from any
point in order to obtain an estimate of the closest mode. If X = [xi]1≤i≤N denotes
the data sample, then the widely known Parzen’s window kernel probability density
estimator (KPDE) [1] can be written as p̂(xi) = C ∑

N
j=1 Ψσ(‖xi −x j‖2

2/2) , where C is
a normalization factor that ensures that

R
p̂(x)dx = 1 and kernel Ψσ is a positive and

monotically decreasing function. Parameter σ denotes the (band)width of the kernel.
Equating the derivative of this KPDE with 0 provides a fixed-point update that is written
as

x̂(t+1) = ∑
N
i=1 Ψ′

σ(‖x̂(t)−xi‖2
2/2)xi

∑
N
i=1 Ψ′

σ(‖x̂(t)−xi‖2
2/2)

, (1)

where t is the iteration index. If x̂(0) = xi, then iterating the update amounts to climbing
towards the closest hill top on the pdf estimate. Such an iterative mode estimator can
also emerge from the field of robust statistics [2]. The idea is to refine the classical
least-squares estimator of the mean in order to make it more robust against outliers. For
this purpose, the quadratic terms are replaced with upper-bounded functions such as
Leclerc’s σ2(1− exp(−x2/σ2)). The fixed-point minimization of this generalized non-
convex estimator leads to a similar update as the hill-climbing procedure on a KPDE.

The literature contains many publications that give recommendations as to the choice
of the optimal kernel and bandwidth [3; 4; 5]. It is noteworthy that the recommenda-
tions are different for KPDE than for robust statistics. In the former case, they aim
at producing the best estimator, achieving for instance a minimal KL divergence with
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respect to the true pdf. In the latter case, however, smoothness is important as well, in
order to prevent the fixed-point procedure to get stuck in poor local minima. Therefore,
robust statistics (or equivalently hill-climbing on a KPDE) requires a tradeoff between
accuracy and smoothness to be found. Most of the recommendations, however, deal
with mono- or two-dimensional case. In contrast, this paper investigates the choice of
the kernel for high-dimensional data. We suggest using flat-top kernels as a way to
fight the curse of dimensionality [6; 7] and in particular the phenomenon of norm con-
centration [6; 7]. An application to image denoising, with so-called patch-based filters
[8; 9; 10], shows that flat-top kernels lead to better performances.

The rest of this paper is organized as follows. Section 2 deals with the counter-
intuitive properties of norms and distances in high-dimensional spaces. It also defines
similarity kernels that take these properties into account. Section 3 introduces image
filtering with patch-based approaches. Section 4 experimentally compares the denois-
ing performance of patch-based filtering with either a Gaussian kernel or the proposed
similarity functions. Finally, Section 5 draws the conclusions.

2 Norms, distances, and similarities in high-dimensional spaces

The curse of dimensionality [6; 7] refers to the counter-intuitive properties of high-
dimensional spaces. Among many other weird manifestations, the phenomenon of
norm concentration is particularly annoying. It states that usual norms and distances
tend to be poorly discriminative in high-dimensional spaces. More precisely, when
the dimensionality grows, the distribution of distances has an increasing mean. As an
example, in the case of a D-dimensional zero-mean unit-variance Gaussian distribu-
tion, Euclidean norms are χD-distributed. This is illustrated in Fig. 1. It is easy to
see that pairwise distances in an isotropic Gaussian D-dimensional distribution are also
χD-distributed, up to a scaling factor.

Fig. 1: Probability densities of ‖x‖2 if x is multivariate Gaussian with zero-mean, unit-variance
and dimensionalities equal to {1,2,3,5,10,20} from left to right.
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Similarities (also known as affinities or proximities) are typically inversely propor-
tional to distances. When they are not ad-hoc measurements, similarities often result
from the application of a decaying kernel to pairwise distances. The most widely used
kernel is without any doubt the Gaussian function exp(−x2/2); it is smooth, easy to
compute, and owns a lot of other useful properties. The application of the Gaussian
function casts Euclidean distances within the interval [0,1]. In order to be discriminant
and thus useful, a similarity is expected to occupy this interval as uniformly as possible.
For the sake of simplicity, let us consider a multimodal distribution, where each mode
is Gaussian. If two vectors stem from a different mode, then we consider them to be
dissimilar. Two vectors are similar if they are drawn from the same mode, that is, they
are both noisy measurements of the same quantity. This allows us to focus on a single
mode. In order to be discriminant and thus useful, we expect the similarity measure
to be close to 1 for distances between 0 and quantile 0.05 of the distance distribution.
Similarly, the similarity should be close to 0 beyond quantile 0.95. Hence, most of the
similarity decay must occur within the interval given by quantiles 5% and 95%. In a
high-dimensional space, a Gaussian kernel cannot satisfy these requirements, whatever
the value of its width is.

Keeping the same assumptions, i.e. Gaussian modes of width σ, we see that D-
dimensional vectors xi and x j are similar if xi − x j ∼ N(0,

√
2σI) and therefore ‖xi −

x j‖2 ∼ χD. Within this framework, we define the similarity as the probability of ob-
serving a larger distance than the one that is measured, that is, sim(xi,x j) = P[

√
2σc ≤

‖xi−x j‖2], where c ∼ χD. The similarity is thus given by the complementary cumula-
tive distribution function (CCDF) of a scaled χD variable.

sim(xi,x j) =
Z

∞

‖xi−x j‖2

√
2

Γ(D/2)

( c
2σ

)D−1
exp

(
− c2

4σ2

)
dc = Q

(
c2

4σ2 ,
D
2

)
, (2)

where Q is the regularized upper incomplete Gamma function [11]. The Gaussian
kernel corresponds to the case D = 2.

The above CCDF is rather expensive to compute. It can be approximated reasonably
well with the CCDF of an ‘all-purpose’ distribution over R+, such as the Burr type XII
distribution [12]. Its scaled CCDF is given by F(b,λ,τ,θ) = (1− (b/λ)τ)−θ. Choosing
τ = D, θ =−1, and λ =

√
2σ yields a good approximation of the χD distribution. The

Burr CCDF reproduces the shape of the χD CCDF, with first a flat top, followed by a
steep descent, and eventually a thin tail.

It is noteworthy that with the kernel (2), the similarity equals 1/2 when the distance
equals the median value of the distribution. Depending on mode overlap, this choice
can be suboptimal. Bandwidth σ can then be adjusted in order to shift the kernel decay
to the left or to the right, in the same way as the bandwidth is adjusted and/or optimized
in Gaussian kernels.

3 Patch-based filtering

The intuitive idea behind patch-based filtering [8] is that a filtered image can be obtained
by averaging pixels sharing similar neighborhoods. For this purpose, patch-based filters
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usually compute similarities with a kernel whose argument is a Euclidean distance be-
tween two vectorized image patches. This methodology turns out to be strongly related
to robust statistics and hill-climbing on a KPDE, with the specificity of working in very
high-dimensional spaces. To see this, we define an image I as a set of pixel locations.
Each pixel is referred to with its coordinate vector i. The distance between the ith and
jth pixel is then defined as ‖i− j‖0. A (square) neighborhood around the ith pixel is
defined as Pi = {j s.t. ‖i− j‖∞ ≤ r}, where r is some radius. The intensity of the ith
pixel is denoted by xi. A patch can then be denoted by xi = [xj]j∈Pi .

A local KPDE in the patch space can be written as p̂(xi) = ∑j∈I Ψσ(‖xi−xj‖2
2/2).

Equating the partial derivative with respect to xk leads to the fixed-point update

x(t+1)
k =

∑i∈Pk ∑j∈I wijΨ
′
σ(‖x(t)

i −xj‖2
2/2)x(t)

j+i−k

∑i∈Pk ∑j∈I wijΨ′
σ(‖x(t)

i −xj‖2
2/2)

, (3)

where t is the iteration index and x(0)
k is initialized to xk. In order to keep an acceptable

computational load, weight wij can be chosen as a decaying function of ‖i− j‖2 and
negligible terms can be omitted in the double sum.

The update rule (3) turns out to be an iterative generalization of an image denoising
technique known as the nonlocal means [8]. Several versions of this filter exist, such as
UINTA [9], SAFIR [13], and many others [10; 14; 15; 16; 17; 18]. Most of the variants,
however, keep using the Gaussian kernel in spite of the high dimensionality of the
patches. Nevertheless, a few attempts to fight the curse of dimensionality can be found
in the literature. For example, in [19], a principal component analysis is achieved in the
patch space, in order to reduce the dimensionality and hence the distance concentration.
In [10], the authors suggest shifting the distribution of patch distances towards zero,
just by subtracting a dimensionality-dependent constant from each distance. Instead,
we propose to replace the classical Gaussian kernel Ψσ(u2/2) = exp(−u2/2/σ2) with

Ψσ(u2/2) =
Z u

0
Q

(
v2

4σ2 ,
D
2

)
vdv (4)

or its Burr approximation given by Ψσ(u2/2) =
R u

0 (1− (v/σ)D)−1vdv.

4 Experiments

The experiments feature three images with 512× 512 pixels and 256 gray levels. The
first one is composed of vertical one-pixel-wide stripes. The second image is a stair,
with a constant low intensity on the left half and a higher one on the right half. For
these two artificial images, the low and high pixel intensities are equal to 50 and 100,
respectively. The third image is Barbara’s widely used picture. White Gaussian noise
is added to all images with three standard deviation levels: ν = {35,50,65} for the
artificial images and ν = {10,15,20} for Barbara’s less contrasted portrait.

Image are filtered by iterating (3) three times. The metaparameters of the filter are
the kernel function (Gaussian, χD CCDF, or Burr CCDF) and its bandwidth σ. For
each image, kernel and noise level, denoising is carried out for σ = {1,5,10,15 . . . ,2ν).
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The denoising quality is assessed with the root mean square error that is defined as
RMSE(z,x(t)) = (∑i∈I(zi−x(t)

i )2/|I|)1/2, where z and x(t) are the noisefree and filtered
images, respectively; |I| denotes their number of pixels.

Results for the stripes images are shown in Fig. 2. As expected from the develop-
ments in Section 2, the minimum values of the RMSE are found at about σ/2 for the
Gaussian kernel while they are around σ for the χD CCDF and Burr CCDF. The Burr
CCDF approximation leads to results similar to those obtained with the computation-
ally more intensive χD CCDF. As this behavior is very similar for all tested images,
and because of space limitations, other figures are not shown here. RMSE results for
all images are presented in Table 4. For all noise levels, the lowest RMSE values are
achieved using the Chi or the Burr kernel.

Fig. 2: Denoising results for the stripes image (RMSE vs range kernel width). The plain line
shows the Gaussian kernel results, the dotted line the χD CCDF results, and the dashed line the
results obtained with the Burr CCDF. Left. Gaussian noise, std = 35. Middle. Gaussian noise, std
= 50. Right, Gaussian noise, std = 65.

Stripes Stair Barbara
ν 35 50 65 35 50 65 10 15 20
Gauss 2.49 6.00 11.92 2.24 2.99 3.62 7.41 9.88 12.72
Chi 2.08 4.12 10.35 2.08 2.88 3.52 7.31 9.72 11.30
Burr 2.39 4.16 11.55 2.17 2.92 3.59 7.32 9.82 11.50

Table 1: Minimum RMSEs for each image, kernel, and noise level.

5 Conclusions

Mode estimation is an effective denoising method. It can be achieved by running a hill-
climbing procedure on a kernel density estimator. This paper investigates the behavior
of this technique in high-dimensional spaces. In particular, we propose kernels that are
specifically crafted to deal with this case. Experiments with several image denoising
tasks show that the proposed kernels outperform the widely used Gaussian function.
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