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Abstract. This paper describes D-VisionDraughts, a distributed player agent for 
draughts which is based on Neural Networks trained by Temporal Differences. D-
VisionDraughs is trained in a high performance environment and achieves a high 
level of play without expert game analysis and with minimum human intervention. 
D-VisionDraughts corresponds to a distributed version of the efficient agent player 
VisionDraughts. In this way, the main contributions of this paper consist on 
substituting the distributed Young Brothers Wait Concept algorithm (YBWC) for 
the serial alpha-beta search algorithm used in VisionDraughts and on measuring 
the impact of a high performance environment into the non-supervised learning 
abilities of the player. Evaluative tests proved that even a modest distributed 
version counting just on ten processors is able to reduce from about 83% the search 
runtime and to increase from 15%  its capacity of winning.  

1 Introduction 

This paper presents the D-VisionDraughts, a distributed and improved version of the 
successful agent for draughts - based on a multilayer perceptron Neural Networks 
(MLP) that learns by reinforcement- named VisionDraughts [2]. The Reinforcement 
Learning methods have been a subject of great interest in the machine learning area, 
since it does not require an intelligent instructor to provide training examples. 
Therefore, it is a suitable tool for dealing with complex domains where it is hard or 
even impossible to obtain such examples [8]. Among the reinforcement learning 
methods, Temporal Differences (TD) stands out. It has been widely used with highly 
efficient results, including in the construction of agents capable of learning to play 
draughts, chess, backgammon, go and other similar games [5], [14] and [12]. Such 
agents have demonstrated that games are a very suitable domain to study and to check 
the efficiency of the machine learning techniques. 
 Particularly, draughts has been chosen as a test bed to evaluate appropriate 
learning methods because it presents significant similarities with several practical 
problems (e.g., human-machine dialogue [15], and urban vehicle traffic control 
problems [16]). Further, draughts game presents many of the research challenges of 
other board games like chess, but without the unnecessary complexity [11]. The 
Schaeffer’s player Chinook [10], [11] is the current man-machine world champion in 
draughts. Its evaluation functions are manually adjusted and the system counts on 
databases to optimize the choice of the best move. It means that the learning process 
of Chinook, differently from the one of D-VisionDraughts, is strongly supervised. 
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 The previous version of D-VisionDraughts - VisionDraughts - uses an efficient 
serial algorithm with alpha-beta pruning to perform the search and counts on two 
versions: in the first one [2], the alpha-beta algorithm follows a limited-depth strategy 
of search, whereas in the second version it expands the current state based on an 
iterative-deepening process. In the second version, a transposition table [2] is used to 
store the nodes that have already been evaluated, speeding up the iterative deepening 
search (where the same nodes may repeatedly be expanded [8]), and to order the 
search-tree. In this paper, the authors distribute the search algorithm used in the first 
version of VisionDraughts by using the Young Brother Wait Concept (YBWC)[3] and 
the inter-process communications mechanism MPI (Message Passing Interface) [7].  

2 Temporal Differences methods in games and Related Works 

This section explains how TD Reinforcement Learning methods can be used by a 
player Neural Network. The idea is that the Network is rewarded for a good 
performance (receiving from the environment a positive reinforcement corresponding 
to the endgame state, in case of victory) and it is punished for a bad performance ( 
receiving from the environment, in case of defeat, a negative reinforcement 
corresponding to the endgame state). For all the intermediate game board states 
(between the starting board and the final board) represented in the input layer of the 
Network, as no specific reward is available, the TD mechanism calculates the 
prediction P of victory  by means of the following equation: 

 

),( outputingP =                                              (1) 

 
where g is the hyperbolic tangent  function and  inoutput  is the local induced field on 
the neuron of the Network output layer  [5], [8]. It means that the value of P depends 
on the Network weights. A prediction P corresponds to a real number belonging to the 
interval [-1,1] that indicates how much the game board  state represented in the input 
of the Network is favorable  to the agent. Each time the agent in a current state S must 
move a piece, a search algorithm is called in order to build a search tree whose 
evaluation will indicate the best move in S. Next, each leaf board-state of the tree is 
represented into the input of the Network such that this Network estimates its 
prediction value. These prediction values are used by the search algorithm in order to 
indicate to the agent which is the best action to be chosen and executed in S. 
Whenever the agent executes a move, the Network weights are updated according to 
equation 2 [14]: 
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where Pt is the prediction corresponding to the current game board state, Pt-1 is the 
prediction corresponding to the previous game board state, each Pk represent the 
prediction corresponding to an earlier game board state, α is the learning rate (defined 
according to how fast the system will update the Network weights), λ is a constant 
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defined according to how much the system will consider the impact of an  earlier state 
Pk in the weight updating process and kwP∇  correspond to the partial derivate of Pk 

with respect to the variable w (weight). 
A relevant contribution in the field of Reinforcement Learning was given by Gerald 

Tesauro when he applied the TD methods to train an evaluation function of a board 
game [14]. Tesauro’s program, TD-Gammon, is a backgammon player that, in spite of 
having very little knowledge about backgammon, is able to play as efficiently as the 
greatest world players. The principles of TD methods have first been applied by 
Samuels, who pioneered the idea of updating evaluations based on successive 
predictions in a checker program [9]. 

3 The Architecture of D-VisionDraughts  

D-VisionDraughts is an agent  that learns to play draughts by reinforcement on a high 
performance environment, what differentiates it from the other non-supervised agents 
cited in section 2 (note that Chinook, in spite of also being parallelized, is a 
supervised agent). The architecture of D-VisionDraughts uses the MPI [7] as inter-
process communication mechanism. In order to estimate the impact of parallelizing an 
agent that learns by reinforcement, D-VisionDraughts corresponds to a distributed 
version of the efficient player VisionDraughts [2] where the serial alpha-beta search 
algorithm of the later is replaced by the distributed algorithm Young Brothers Wait 
Concept (YBWC). Figure 1 shows the architecture  of D-VisionDraughts. The YBWC 
was chosen because it showed the best tradeoff between performance and 
programming constraints and it naturally fits the distributed scenarios found in many 
practical applications. Other options like APHID [1] or DTS [1]  were not considered 
due to additional technical difficulties. DTS, for example, requires a shared memory 
architecture. Concisely, whenever the agent must choose a piece to move, the current 
board state, B1, is presented to the distributed Alpha-Beta search algorithm (YBWC), 
#1 (step 1 in the figure). The search module performs a limited depth-first search 
corresponding to B1, #2.  Each leaf board-state  of the search tree is converted into a 
feature-based representation - that is, it is represented by means of a set of functions 
(called features) that captures relevant knowledge about the domain of Draughts [2] – 
and is presented to the input of the MLP, #3. The MLP will evaluate each of these 
leaves and will output a value (prediction) that indicates to which extent it is 
favorable to the agent player. This value is returned to the search algorithm, #4, in 
order to allow it to point out the best move to be performed from B1, #5. The agent 
then executes the move, #6. The new board state B2 is converted into a feature-based 
representation, #7, and presented to the MLP to be evaluated, #8. If the agent plays a 
training game, the prediction calculated by the MLP for B2 is used by the TD learning 
module as an input parameter to update the MLP weights, #9. The weights of the 
MLP are updated, #10, and the cycle begins again for the new current board state B2, 
#11.The agent is trained by self-play with cloning technique [2]. Note that for a non-
training match, D-VisionDraughts presents the same architecture described above, 
just cutting off the TD learning module and links #9, and #10. 

137

ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 27-29 April 2011, i6doc.com publ., ISBN 978-2-87419-044-5. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100817300.



 

Fig. 1: D-VisionDraughts Learning Process 
 
 The Artificial Neural Network (ANN) module is the core of the agent and 
corresponds to a three layer feedforward network whose output layer is composed of a 
single neuron. As said before, the role of this network is to evaluate to which extent a 
board state is favorable to the agent (prediction).  
 The main idea of the algorithm YBWC used in D-VisionDraughts is to search 
the first sibling node, referred as the eldest brother, before spawning the remaining 
siblings in parallel, the younger brothers. This is based on the observation that the 
previous evaluation of the eldest brother will more likely produce either a convenient 
pruning on the search tree (which will avoid an unnecessary evaluation of the younger 
brothers), or a convenient narrowing on the search window that will speed up the 
search [3]. If the evaluation of the eldest brother does not produce a cut-off, then the 
remaining moves are searched in parallel. As in the original sequential alpha-beta 
algorithm the exploration of a node depends on the priori knowledge obtained during 
the expansion of the eldest nodes to prevent searching those parts of the tree that have 
no influence on the final results, the task of distributing this algorithm is not trivial,  
since a parallel search will traverse different parts of the tree, simultaneously, with no 
guaranty that such a priori knowledge is available. That is the main difficulty to be 
overcome when distributing the alpha-beta algorithm. The YBWC tries to solve this 
problem in the following way: instead of waiting to have the search window value 
corresponding to the evaluation of the eldest brothers for exploring a node N,  a 
master processor P1 distributes its exploration to an idle slave processor P2 with the 
current available search window and, as soon as P1 detects a narrowing in that 
window, it communicates these new bounds to P2. This later, then, checks whether 
these new bounds allow a pruning of N. If it does, P2 aborts the processing of N.  
 D-VisionDraughts operates with a dynamic number n of processors (particularly 
here, 10 processors were used). It uses a stack data structure to appropriately represent 
the state space, given that it keeps track of the nodes to be explored. The depth of the 
stack is the same of the nodes being currently explored in the search tree. Thus, all 
nodes of a certain level of each sub tree are pushed into the same depth of the stack. 
Each processor keeps its own local stack. Whenever this stack is empty, the processor 
requires a task to the other processors. When a processor P receives a task of 
exploring a node N, placed in the depth d, it stores N in its local stack in the same 
depth d and begins to explore it. Each time D-VisionDraughts starts off a search, the 
current board state, N0, is pushed into the local stack of a main processor P0 (at that 
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moment, the local stacks of the other processors are empty). The system then 
performs a serial expansion of the left-most sub tree of N0 up to the maximum depth, 
being able to start the distributed expansion of the remaining sub-trees of N0.  

4 Experimental Results 

This section presents comparative real tests whose results confirm the improvement 
obtained with the distributed search of D-VisionDraughts - counting on two Intel 
Core 2 Quad Q6600 CPU and one Intel Core 2 Duo E6600 CPU connected by a Giga-
bit Ethernet switch - compared to the serial search performed by VisionDraughts. 
 1) First test: D-VisionDraughts and VisionDraughts evaluated 20 distinct board-
states, chosen randomly in a database composed of board-states generated in matches 
involving famous human players of draughts [4]. These evaluations were performed 
in a limited depth-search expansion of depth 14. Note that this depth (look-ahead) 
requires a high level of performance from the agent. For example, NeuroDraughts 
was trained with look-ahead of just 4, since deeper expansions would demand a very 
long training time in order to produce a good player [2] (in fact, in [2] it is shown that 
the runtime of VisionDraughts is 90% less than the one of NeuroDraughts). The 
objective of this first test is to estimate the average search runtime (in seconds) 
required for each agent. Table 2 shows that the search runtime of D-VisionDraughts is 
about 83% less than the search runtime of VisionDraughts.  
 2) Second test: in order to compare the learning capacity of the player Neural 
Networks of D-VisionDraughts and VisionDraughts, the best player of each system 
disputed an evaluative tournament of 40 matches. Both players were generated from a 
training tournament with the same duration of 4 hours and with the same search depth 
limit of 12. The improved distributed search algorithm of D-VisionDraughts allowed 
it to make 79 training matches during the training tournament, whereas 
VisionDraughts could make just 27 ones. The objective of this test is to check which 
system will generate the best player in the same training conditions. Table 2 shows 
that D-VisionDraughts obtained 15% more victories than VisionDraughts. The last 
but one line of table 3 indicates the quantity of draws and the last line indicates how 
many of these draws were caused by endgame loops.  
 

 
VisionDraughts 
(in seconds) 

D-VisionDraughts 
with 10 processors  

(in seconds) 
78.08 12.99 

Table 2: Experimental results 
 Table 3: Evaluative Tournament : D-

VisionDraughs X  VisionDraughs

5 Conclusion and Future Works 

This paper presents how much the search module based on the YBWC distributed 
alpha-beta algorithm implemented in D-VisionDraughts can improve the learning 

Results obtained by D-VisionDraughts  
playing against  VisionDraughts 

 

Wins  16  
Losses 10  
Draws 14  
Loops 6  
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process of Neural Networks. Evaluative tests showed that the distributed search 
version (counting just on 10 processors) was about three times faster than the serial 
version. This advantage allowed that D-VisionDraughts, in the same training 
conditions, was able to generate a much better player. As future works, the authors 
intend to distribute the search module of the second version of VisionDraughts (which 
includes Transposition Tables, Iterative Deepening and move ordering and to increase 
the quantity of available processors. 
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