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Abstract. In this paper we propose the generalization of the recently
introduced Neighbor Embedding Exploratory Observation Machine (NE-
XOM) for dimension reduction and visualization. We provide a gen-
eral mathematical framework called Self Organized Neighbor Embedding
(SONE). It treats the components, like data similarity measures and neigh-
borhood functions, independently and easily changeable. And it enables
the utilization of different divergences, based on the theory of Fréchet
derivatives. In this way we propose a new dimension reduction and visual-
ization algorithm, which can be easily adapted to the user specific request
and the actual problem.

1 Introduction

Various dimension reduction techniques have been introduced based on different
properties of the original data to be preserved. The spectrum ranges from linear
projections of original data, such as in Principal Component Analysis (PCA)
or classical Multidimensional Scaling (MDS) to a wide range of locally linear
and non-linear approaches, such as Isomap, Locally Linear Embedding (LLE),
Local Linear Coordination (LLC), or charting. Stochastic Neighbor Embed-
ding (SNE)approximates the probability distribution in the high-dimensional
space, defined by neighboring points, with their probability distribution in a
lower-dimensional space. A technique called t-SNE was proposed in [10]. It is
a variation of SNE considering another statistical model assumption for data
distributions. Other methods aim at the preservation of the classification ac-
curacy in lower dimensions and incorporate the available label information for
the embedding, e. g. Linear Discriminant Analysis (LDA) [5] and generaliza-
tions thereof and extensions of the Self Organizing Map (SOM) incorporating
class labels. For a comprehensive review on nonlinear dimensionality reduction
methods, we refer to [7]. Recently, the idea of fast and efficient online learning
was combined with the high-quality of divergence based optimization, resulting
in a new dimension reduction algorithm called Neighbor Embedding XOM (NE-
XOM). Its usefulness and comparison with other methods is shown in [3]. The
authors connected a computational approach to topology learning, the Explo-
ration Observation Machine (XOM) as introduced in [12], with the divergence
optimization of SNE. In this contribution, we extend the approach proposed in
[3], with a mathematical foundation for the generalization of the principle to
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arbitrary divergences based on Fréchet derivatives. This generalized framework
is called Self Organized Neighbor Embedding (SONE) in the following. In this
way we propose a new dimension reduction and visualization algorithm, which
can easily adapted to the user specific request and the actual problem. We
will describe the NE-XOM extension in section 2, describe the new generalized
framework SONE in section 3, show the extension for some famous families of
divergences and conclude in section 5.

2 The Neighbor Embedding XOM (NE-XOM)

In this section we review the combination of direct divergence inspired by SNE
with fast sequential online learning resulting in a new algorithm called Neigh-
bor Embedding XOM (NE-XOM) introduced in [3]. The original XOM algo-
rithm maps a finite number of high-dimensional data points xi ∈ X in the
observation space X to low-dimensional image vectors yi ∈ E in the embed-
ding space E . The embedding space is associated with a structure hypothesis,
given by a number of sampling vectors s ∈ E , which corresponds to the final
structure in which the data is embedded. Reasonable choices for the sampling
vectors s are: the location on a regular lattice structure in E , discrete posi-
tions in E as representation of a finite number of class centers, drawn from
a mixture of Gaussian to represent a finite number of clusters, or uniformly
sampled in a region of E to indicate that the visualization of the data should
occupy the full projection space. For the extension, let hσ(dX (ΨGKL(s),x

k))

and gς(dE (s,yk))
(
abbreviated by h

ΨGKL(s)
σ (k) and gsς (k)

)
be any positive inte-

grable measures denoting the neighborhood cooperation in the observation and
the embedding space respectively. Following the ideas of SNE, NE-XOM tries
to minimize the difference between these two neighborhood functions measured
by the Kullback-Leibler (KL) divergence. Note, that in contrast to SNE, which
is originally defined for probability densities p(r) with scalar r, the constraint∫
p(r) dr = 1 is not imposed here. The neighborhood function h

ΨGKL(s)
σ of the

observation space X might be a Gaussian: hij
σ = exp

(
−dX (xi,xj)

2σ2

)
with σ > 0.

Depending on the choice for the neighborhood cooperation gς in the embedding
space with variance ς the learning rule and thus the final embedding may vary a
lot. We will provide in the following the learning rules for the case of a Gaussian
neighborhood cooperation:

gsς (k) = exp

(−dE(s,yk)

2ς2

)
derivative:

∂gsς (k)

∂yk
=

(
−gsς (k)

2ς2

)
∂dE(s,yk)

∂yk
(1)

and a t-Distribution-like cooperation function:

gsς (k) =

(
1 +

dE(s,yk)

ς

)(− ς+1
2 )

deriv.:
∂gsς (k)

∂yk
=

(− ς+1
2ς

)
gsς (k)

(1 + dE(s,yk)
ς )

∂dE(s,yk)

∂yk
.

(2)
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For positive measures p and q the Generalized Kullback-Leibler (GKL) diver-

gence: DGKL(p‖q) =
∫
p(r) ln

(
p(r)
q(r)

)
dr− ∫ [p(r)− q(r)] dr is used. We are able

to define a cost function using the neighborhood functions from the original and
the embedding space and the GKL divergence DGKL:

ENE-XOM ∼
∫ ∑

i

δΨGKL(s),xi ·
∑
j

DGKL

(
hΨGKL(s)
σ (j)|gsς (j)

)
p(s)ds (3)

where h
ΨGKL(s)
σ = hσ(dX (ΨGKL(s),x

k)) and the best match data point ΨGKL(s)
for a given sampling vector s is given by

ΨGKL(s) = xi such that
∑
j

DGKL

(
hΨGKL(s)
σ (j)‖gsς (j)

)
is minimum. (4)

This results in the learning rule for the NE-XOM:

yk = yk − τ
∂gsς (k)

∂yk

(
1− h

ΨGKL(s)
σ (k)

gsς (k)

)
, (5)

In the following sections we will generalize this concept for arbitrary divergences.

3 A Generalized Framework for Dimension Reduction

Divergences can be an alternative to the most frequently used Euclidean distance
and may lead to improved classification accuracy. Furthermore divergences can
be applied in the field of dimension reduction: for example in Stochastic Neigh-
bor Embedding (SNE), t-distributed SNE (t-SNE) and Multidimensional Scaling
(MDS) [10, 6]. In [11] the mathematical foundation to extend SNE and t-SNE
for use with arbitrary divergences is given. We will use this concept to generalize
the algorithm explained in section 2.

Divergences are functionals D(p‖q) designed as dissimilarity measures be-
tween two nonnegative integrable functions p and q [4]. In practice, usually
p corresponds to the observed data and q denotes the estimated or expected
data. We call p and q positive measures defined on r in the domain V . The
weight of the functional p is defined as W (p) =

∫
V p(r) dr. Positive measures

with the additional constraint W (p) = 1 are denoted as probability density
functions. Generally speaking, divergences measure a quasi-distance or directed
difference. In contrast to a metric, a divergence must not be symmetric in the
sense D(p‖q) = D(q‖p) and does not necessarily satisfy the triangular inequality
D(p‖q) ≤ D(p‖z) + D(z‖q). Note, that the definition of the considered diver-
gences for non-normalized positive measures has an important property. It allows
the analysis of patterns of different size to be weighted differently, e. g. images
with different size or documents of variable length. Following [4] one can distin-
guish at least three main families of divergences with the same consistent prop-
erties: Bregman-divergences, Csiszár’s f -divergences and γ-divergences. Note
that all these families contain the Kullback-Leibler (KL) divergence as special
case, so the KL-divergence can be seen as the non empty intersection.
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In the following we will briefly review the concept of Fréchet derivatives
and we will define the mathematical framework for Self Organized Neighbor
embedding (SONE) using arbitrary divergences.

We use the concept of Fréchet derivatives of a function f defined on Banach
spaces:

lim
ε→0

1

ε
(L[f + εh]− L[f ]) =:

δL[f ]

δf
[h] . (6)

for the generalization of the definition given in Eq. (5). Detailed descriptions
and formulas can be found in [2].

3.1 Self Organized Neighbor Embedding (SONE)

We define a cost function for arbitrary Divergences D(p‖q):

ESONE =

∫ ∑
i

δΨD(s),xi ·
∑
j

D
(
hΨD(s)
σ (j)

∥∥gsς (j)) p(s)ds , (7)

where the best matching data point ΨD(s) for s is defined as:

ΨD(s) = xi such that
∑
j

D
(
hΨD(s)
σ (j)

∥∥gsς (j)) is minimum. (8)

Let V be a Banach space and U ⊂ V an open subset of V . The divergence
D : U → IR is defined as a mapping from U to IR. Further D uses a bounded
linear operator: the integral

∫
: V → IR. So the derivative of the cost function

(7) with respect to the image vectors yk can be done using the Fréchet derivative
Eq. (6):

∂ESONE

∂yk
=

∫ ⎡⎣δD
(
h
ΨD(s)
σ

∥∥gsς )
δgsς

[l] · ∂g
s
ς

∂yk

⎤
⎦ dl =

δD
(
h
ΨD(s)
σ

∥∥gsς )
δgsς

⏐⏐⏐⏐⏐
k

· ∂g
s
ς (k)

∂yk
.

(9)

This yields the online learning update rule for s and learning rate τ :

yk = yk − τΔyk with Δyk =
δD
(
h
ΨD(s)
σ

∥∥gsς )
δgsς

⏐⏐⏐⏐⏐
k

· ∂g
s
ς (k)

∂yk
(10)

The explicit formulas for the special learning rules in case of Gaussian and t-
distribution (Eq. (1) and (2)) and different divergences can be found in [2].

4 Example

The identification of bacteria is an important task in medicine or biology and
is often done using large databases with reference signatures [9]. The reference
spectra of the different bacteria species are in parts very similar and multi-modal
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Fig. 1: Similarity map of the bacteria data set and two selected zoomed regions.

as an additional challenge for the identification methods. To maintain these
databases efficient exploration and visualization tools are necessary. Common
tasks are the identification of outliers, strong overlapping and therefore hard to
distinguish data clusters or erroneous measurements.

Here we consider a database of N = 3048 bacteria samples measured and
prepared in accordance to [1, 9]. Each sample is given as a vector x ∈ R

D,
with dimensionality D (number of peaks), considered as a function p. Overall
the data contain around 200 species in accordance to the taxonomy of bacteria
and are quite challenging for visualization. For each x a labeling is available
shown in Fig. 1 by a three letter code. The map obtained with t-SNE is also
able to separate some clusters of bacteria, but the center is more crowded then
the SONE map SONE allows to influence the granularity and enforce spreading
of the data samples on the given structure hypothesis, which enhances visibility
of single samples. The quality of the both the SONE and t-SNE embedding
measured with the method proposed in [8] behaves quite similar.

The SONE representation was already quite effective in representing the
many bacteria spectra and similar samples are indeed plotted near to each other,
which is in good agreement to the expectations of the experts [9]. The map also
allows to identify isolated clusters like the one depicted in the right subplot. This
plot contains most of the Listeria spectra from the database which are known to
be very distinctive. For the second subplot (left) a large cohort of Vibrio spectra
is shown. It is more diverse and very well represented, but we can also identify
more distant Vibrio items which by closer inspection are indeed special cases.
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The map allows the biochemical expert to navigate through the similarity space
and to analyze spectra found to be (dis-)similar by the model.

5 Conclusion

In this article we provide the mathematical foundation for a generalization of
Self Organized Neighbor Embedding (SONE) which can be applied in dimension
reduction and visualization tasks. The framework allows for the use of a very
broad class of divergences as cost function. In this context, we first present a
general formulation of SONE as a gradient based optimization scheme. The
use of a particular dissimilarity measure requires the availability of its Fréchet-
derivative, which we present for a wide class of divergences. Detailed descriptions
and formulas can be found in [2].

We showed the applicability in the experiment section on the example of a
similarity map in the domain of Bacteria diversity. In forthcoming studies we
will examine the role of the different divergence families and their advantages
for data domains.
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