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Abstract. We propose a general principle to extend dimension reduction
tools to explicit dimension reduction mappings and we show that this can
serve as an interface to incorporate prior knowledge in the form of class la-
bels. We explicitly demonstrate this technique by combining locally linear
mappings which result from matrix learning vector quantization schemes
with the t-distributed stochastic neighbor embedding cost function. The
technique is tested on several benchmark data sets.

1 Introduction

In many areas such as robotics, medicine, biology, etc. electronic data sets are
increasing rapidly with respect to size and complexity. On the one hand these
data can provide additional useful information for human users in the respective
field. On the other hand, it becomes more and more difficult to directly access
the information. As a consequence, many data visualization and dimensional-
ity reduction techniques have emerged in the last years which help humans to
rapidly scan through large volumes of data relying on their cognitive capabil-
ities for visual perception [6, 11, 12]. Dimension reduction techniques can be
decomposed into classical linear techniques such as principle component anal-
ysis (PCA) or linear discriminant analysis (LDA), and modern nonlinear tools
involving, for example, locally linear embedding (LLE), Isomap, t-distributed
stochastic neighbor embedding (t-SNE), maximum variance unfolding (MVU),
etc. [6]. Most of the latter techniques, however, provide a mapping of the given
data points only, rather than an explicit embedding function. As a consequence,
additional effort has to be taken for out-of-sample extensions. In addition, the
outcome of the models heavily relies on the chosen criterion, consequently di-
mensionality reduction is an inherently ill-posed problem. In this contribution
we propose a general principle to extend dimension reduction tools to obtain an
explicit mapping with fixed prior shape. This has two consequences: It allows
immediate out-of-sample extensions and one can directly access the generaliza-
tion ability of the models. We show in examples that the latter is excellent,
implying that the techniques can drastically be accelerated by reducing training
to only a small subset. In addition, the integration of prior knowledge in the form
of class labels is easily possible by biasing the dimensionality reduction mapping
towards this auxiliary information. We show the feasibility and efficiency of this
approach by a direct comparison to recent alternatives as proposed e.g. in [12].

2 Learning Mappings for Dimension Reduction

Most dimension reduction methods produce a mapping of data points R
N �

xi → yi ∈ R
2, only. The embedding of new points requires additional com-

putation, often the optimization is run again keeping all known points fixed.
Besides the additional effort, this method has the drawback that it is difficult
to investigate the generalization ability of these mappings and some effort has
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to be done to integrate auxiliary information into the mapping prescription. We
can avoid these problems by the definition of an explicit dimension reduction
mapping function f : RN → R

2, xi → yi = f(xi) for the projection of the
points. Essentially, we propose to fix a parameterized form of f prior to train-
ing. Then the parameters are optimized according to the objective as specified
by the respective dimension reduction method.

In the literature, a few dimension reduction technologies provide an explicit
mapping of the data: linear methods such as PCA provide an explicit linear
function [1]. Nonlinear extensions thereof can be realized by autoencoder net-
works Manifold charting starts from locally linear embeddings given by local
PCAs and glues these pieces together by minimizing the error on the overlaps
[3, 9]. Topographic maps such as the self-organizing map (SOM) or generative
topographic mapping (GTM) characterize data in terms of prototypes which are
visualized in low dimensions [2, 5]. Due to the clustering, new data can directly
be visualized by mapping these data to their closest prototype.

A few dimension reduction mappings which give coordinates per default have
been extended to global mappings. Locally linear coordination (LLC) [9] extends
locally linear embedding (LLE) by assuming that locally linear methods, such as
local PCAs, are available, and by glueing them together adding affine transfor-
mations. The additional parameters are optimized using the LLE cost function.
Parameterized t-distributed stochastic neighbor embedding (t-SNE) [10] extends
t-SNE towards an embedding given by a multilayer neural network. The network
parameters are determined using back propagation, where, instead of the mean
squared error, the t-SNE cost function is taken as objective.

2.1 A General Principle
Popular dimension reduction techniques include methods which try to preserve
distances such as multi dimensional scaling (MDS) or Isomap, or they preserve
more general information connected to the neighborhood graph such as Lapla-
cian eigenmaps. Furthermore some techniques try to preserve locally linear
relationships such as LLE, pairwise distributions such as SNE and t-SNE or
neighborhood distances giving maximum variance such as maximum variance
unfolding, etc. Many of these approaches can be put into a common framework:
characteristics of the original data points xi are computed (such as pairwise
distances, pairwise geodesic distances, locally linear relationship, etc.) and the
same or similar characteristics are induced by the projected points yi. The goal
is to find coefficients of the projections such that these two characteristics match
as far as possible as measured by some cost function. Possibly additional con-
straints or objectives are formalized to achieve uniqueness. The methods differ
in the choice of the data characteristics, the choice of the error measure, and the
way in which optimization takes place. Thus, considering dimension reduction
as optimization task allows us to formalize many different dimension reduction
methods in a common framework as detailed in Table 1.
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This general view allows us to simultaneously extend all methods to dimen-
sion reduction mappings in a general way. In a first step, the principled form and
complexity of the mapping is fixed by a parameterized function fW : RN → R

2

with parameters W . This function can be given by a linear function, a locally
linear function, a feedforward neural network, etc.. Then, instead of coefficients
yi, the images of the map fW (xi) are considered and the map parameters W are
optimized according to the characteristics of the data and corresponding error
measure, respectively. This principle leads to a well defined mathematical objec-
tive for the mapping parameters W for every dimensionality reduction method
as summarized above. The way in which optimization takes place is possibly
different from the original method: while numerical methods such as gradient
descent can still be used, it is frequently no longer possible to find closed form
solutions for spectral methods. However, numerical optimization can be used as
a default in all cases. We exemplify the above in terms of locally linear mappings
built on top of locally linear projections, whereby we combine these functions
with the t-SNE cost term. We emphasize the possibility to integrate auxiliary
information into the process, and we conduct corresponding experiments later.

2.2 Supervised Locally Linear t-SNE Mapping
We can impose a global nonlinear embedding function on top of locally linear
projections obtained, e.g., using prototype based methods [7, 8]. Since we want
to obtain a supervised visualization of data which emphasizes the aspects rel-
evant for a given labeling of the data, we take locally linear projections which
are biased according to the given auxiliary information, i.e. the projections are
given by supervised prototype based methods such as matrix learning vector
quantization [8, 4]. We assume that locally linear projections have the form:

xl �→ pk(x
l) = Ωkx

l −wk (1)

with local matrices Ωk and prototypes wk. Further, we assume the existence
of responsibilities rlk of mapping pk for xl, which can be given by the receptive
fields of the locally linear maps centered aroundwk or Gaussians centered around
these points, for example. We assume

∑
k rlk = 1. Then a global mapping which

combines these linear pieces can be defined as

fW : xl �→ yl =
∑

k

rlk(Lk · pk(xl) + lk) , (2)

using locally linear projections Lk and local offsets lk to align the local pieces.
Note that the dimensionality of the weights W which have to be determined de-
pends on the number of pieces k and the dimensionality of the local projections.
Usually, it is much smaller than the number of coefficients when projecting all
points yl directly to the Euclidean plane. These parameters can be determined
by a stochastic gradient descent. The derivative of the t-SNE cost function yields

∂Et−SNE

∂Lk
=
ς + 1

ς

∑

ij

(pij − qji)

1 + dE(yi,yj)/ς
· (yi − yj)(rikpk(x

i)− rjkpk(x
j))

∂Et−SNE

∂lk
=
ς + 1

ς

∑

ij

(pij − qji)

1 + dE(yi,yj)2/ς
· (yi − yj)(rik − rjk)
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Fig. 1: Comparison of the 5 nearest neighbor errors for all data sets.

assuming Euclidean distance in the projection space. In the following section we
evaluate the proposed method using the learning rule based on the t-SNE cost
function defined above and locally linear projections obtained by limited rank
matrix learning vector quantization (LiRaM LVQ) [4] in a supervised manner.

3 Experiments
In this section we evaluate the proposed method on three data sets also investi-
gated in [12] and described in table 2. For learning locally linear projections, we
use LiRaM LVQ with the rank of matrices limited to 10, 10 and 30 for the data
sets respectively and the number of prototypes equal to the number of classes.
For the coordination, we use crisp responsibilities given by the receptive fields.
All other parameters are set as default values. We train the mapping using only
a small subset of the full data set (7%-18%) and evaluate the results for the full
data set by using the mapping.

For evaluation we measure the classification error of the resulting visualiza-
tion using a 5-nearest neighbor evaluation (5NN error). We compare our results
with the results taken from [12] on the same data sets where six state-of-the art
supervised nonlinear embeddings are tested (Supervised neighbor retrieval visu-
alizer (SNeRV), Multiple relational embedding (MRE), Colored maximum vari-
ance unfolding (MUHSIC), Supervised isomap (S-Isomap), Parametric embed-
ding (PE), Neighbourhood component analysis (NCA)). Note that these methods
use only a small subpart of the dataset within an evaluation, while we evaluate
our approach on the full data set by means of the explicit mapping. The com-
parison of the error rates are shown in Figure 1. Interestingly, the classification
error obtained by the proposed method is smaller than the alternatives for all
three data sets. This is particularly remarkable since we used only a fraction
of the data to obtain the map, i.e. the proposed method displays excellent and
very efficient generalization to large data sets. The corresponding visualizations
display a clear class structure as shown in Figure 2.

4 Conclusion

We have proposed a general way to extend arbitrary dimension reduction tech-
niques, based on cost optimization, to explicit mappings which take into account
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Fig. 2: Visualization of the Letter and Phoneme data set in two dimensions as
obtained by the proposed supervised dimension reduction mapping.

prior class labeling. We demonstrated the feasibility of the approach for locally
linear maps obtained from matrix learning vector quantization and the t-SNE
cost function for their coordination, yielding excellent results for three bench-
marks. This technique offers the possibility of very flexible and very efficient
visualization, since a bias towards given information can easily be integrated
into the form of the mapping function and initial solutions, on the one hand,
and a small number of data is sufficient to obtain a visualization of the full data
set due to the excellent generalization ability of the technique.
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