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Abstract. The goal of a Brain-Computer Interface (BCI) is to enable
communication by pure brain activity without the need for muscle control.
Recently BCIs based on code-modulated visual evoked potentials (c-VEPs)
have shown great potential to establish high-performance communication.
In this paper we present two new methods to improve classification in a
c-VEP BCI. Canonical correlation analysis can be used to build an op-
timal spatial filter for detection of c-VEPs, while the use of a one class
support vector machine (OCSVM) makes the BCI more robust in terms
of artefacts and thus increases performance. We show both methods to
increase performance in an offline analysis on data from 8 subjects. As
a proof of concept both methods are tested online with one subject, who
achieved an average performance of 133 bit/min, which is higher than any
other bitrate reported so far for a non-invasive BCI.

1 Introduction

A Brain-Computer Interface (BCI) enables a user to control a computer by pure
brain activity without the need for muscle control. Its main purpose is to restore
communication in severely disabled persons, who are not able to communicate
by muscle control due to neurodegenerative diseases or traumatic brain injuries.
While there are different kinds of BCIs, this paper focuses on a BCI based on
code-modulated visual evoked potentials (c-VEPs).

In a c-VEP BCI a pseudorandom code is used to modulate different visual
stimuli. If a person attends one of those stimuli a c-VEP is evoked and thus
can be used for controlling the BCI. This idea has been proposed by Sutter in
1984[1] and has been tested 8 years later when an ALS patient was reported
to write 10 to 12 words/minute with a c-VEP BCI system using intracranial
electrodes[2]. Until recently there has been no proper evaluation of a c-VEP
BCI with EEG, when it was shown that a BCI based on c-VEPs outperforms
BCIs based on other kinds of visual stimuli[3]. In [4] it was shown, that the
use of canonical correlation analysis (CCA) increases performance and that an
average online accuracy of 85 % can be reached with 32 classes.

In this paper we propose a one class support vector machine (OCSVM) as a
new method to improve classification accuracy in a c-VEP BCI. Also a different
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method of using CCA to construct a better spatial filter is proposed and evalu-
ated. Both methods are shown to increase performance on offline data and their
feasibility is demonstrated in an online test with one subject.

2 Method

2.1 Configuration of the c-VEP BCI system

The system is similar to the one described in [4], consisting of an EEG ampli-
fier, a personal computer (PC) and a CRT Monitor. Stimulus presentation and
online classification are operated from the PC. The presentation of the stimuli
is synchronized with the EEG amplifier by using the parallel port. The visual
stimuli are presented on an 17 inch CRT Monitor with a 60 Hz refresh rate and
a resolution of 640 x 480 pixel. DirectX (Microsoft Inc.) is used to ensure syn-
chronisation of the presented stimuli with the refresh rate of the CRT monitor.
A stimulus can either be black or white, which can be represented by 0 or 1
in a binary sequence. A 30 Hz flickering can therefore be represented by the
following sequence: ’01010101...’ when using a 60 Hz refresh rate.

The c-VEP BCI consists of 32 targets with the arrangement of the targets
shown in figure 1. The 32 targets are arranged as a 4x8 matrix and 28 com-
plementary non-target stimuli are surrounding the targets. For modulation of
the target stimuli a 63-bit binary m-sequence is used, because of the low auto-
correlation property of m-sequences. For each target the same sequence is used
for modulation, but the sequence is circular-shifted for each target by a different
number of bits. An example for the circular shift of the modulation sequence
can be seen in figure 1, with target T0 having no shift, T1 being shifted by 2 bit,
T2 being shifted by 4 bit and so on, resulting in a time lag τs = 2/60 s = 0.033 s
between two consecutive targets. In total the length of one stimulation sequence
is Ts = 63/60 s = 1.05 s. Between two stimulation sequences there is a break
of about 0.85 s which is sufficient enough for the user to switch to a different
target.

Fig. 1: A) Arrangement of the stimuli for the c-VEP BCI. The gray area shows
the 32 target stimuli with the number referring to the number of the target. The
stimuli in the white area are the complementary flickers, which are synchronized
to the target with the same number. B) Modulation sequence for the first 5
targets.
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2.2 Classification

For identifying the attended target, a template needs to be generated first. Dur-
ing the calibration stage the user has to attend to a specified target Tr k times.
When the user is attending to the target Tr, a c-VEP is elicited by modulation
of the target stimulus. By averaging the EEG data from the k stimulation se-
quences an average c-VEP can be used as a template Mr for the attended target.
By using the circular-shift property of the c-VEP BCI, a template for all other
targets can be generated by shifting the template Mr:

Mx(t) = Mr(t− τs · (x− r)) x = 0, 1, 2 . . . , 31 (1)

After templates for each target are generated, the system can identify which
target the user is attending to, by calculating the correlation of the recorded
EEG signal with the templates of each target. The target with the highest
correlation is selected and thus the system can be used to select letters.

2.2.1 Classification by one class SVM

Instead of using correlation for identification of the attended target, we propose
the use of a OCSVM[5]. Rather than averaging the EEG data from multiple
stimulation sequences, a OCSVM can be used to estimate the probability distri-
bution of the data. The OCSVM results in a hyper-sphere with minimal radius,
that encloses a given percentage of the data. The center of the hyper-sphere can
be used as a template, which can be shifted to obtain templates for all targets
as described in section 2.2. By calculating the euclidean distance between a new
data point and all templates, the template with the smallest distance to the new
data point is obtained and the corresponding target is selected.

2.2.2 Canonical correlation analysis to design optimal spatial filters

The goal of CCA is to find linear transformations Wx and Ws which maximize
the correlation between X and S[6]:

max
Wx,Ws

WT
x XSTWs√

WT
x XXTWx ·WT

s SSTWs

(2)

To obtain an optimal spatial filter Wx for classification of the c-VEPs, X is the
raw EEG-data and S is the desired waveform of the average c-VEP.

To construct the spatial filter one must obtain k trials with EEG data, each
consisting of a n×m matrix with n being the number of channels and m being
the number of samples. All trials are concatenated to a new matrix X with new
dimensions n × (k · m). To obtain S, first the average c-VEP waveform R is
generated by averaging over all k trials, then R is replicated k times, to obtain
a n× (k ·m) matrix S = [RR . . . R].

These X and S can then be used for calculating the spatial filter Wx by
CCA. While the matrices X and S need the same number of k ·m columns, they
are allowed to have different number of rows.
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Therefore different methods for applying CCA were tested, in which different
channels for X and S were used:
best channel overall: Classification accuracy is estimated by a leave-one-out

estimation for all channels and all subjects. As a result channel PO3
(referenced to Oz) was the channel that gave the best overall results. The
data from PO3 is then used for S and all channels are used for X.

Bin et al. : The method as proposed in [4], where the same pre-defined channel
subset is used in X and in S.

best channel individual : A leave-one-out estimation is performed for each
channel and each subject individually to select the individual best channel.
The channel, for which the highest accuracy is estimated, is then used for
S and all channels are used in X.

best multichannels individual: A leave-one-out estimation is performed for
each channel and each subject individually. If pb is the estimated accuracy
for the best channel b all channels x with px ≥ 0.9 · pb are used for S and
all channels are used in X.

When doing a leave-one-out estimation, the Pearson correlation was used
for target identification, because of its efficiency. For implementation of the
OCSVM we used LibSVM with a linear kernel and ν = 0.5.

2.3 Offline analysis

Data from 8 subjects was used in the offline analysis to compare the methods
described in section 2.2. EEG data was recorded with a g.Tec amplifier at 600
Hz from 30 electrodes referenced to Oz. Each subject attended each of the 32
targets 20 times, resulting in a total of 640 trials. To estimate accuracy a 10-fold
cross-validation was performed. When comparing the different approaches for
constructing the spatial filter, OCSVM was used for target identification.

2.4 Online proof of concept

To proof that the proposed system with OCSVM is viable in an online setting,
it was tested with subject AB, whose data from a previous session was also used
for the offline analysis. For training the OCSVM and construction of the spatial
filter by CCA (based on best individual channel method) 128 trials of training
data were recorded and the system was tested online with 192 trials.

3 Results

3.1 Offline analysis

Table 1 shows the results for the comparison of OCSVM with the classical corre-
lation approach. It can be seen that the use of OCSVM gives better classification
accuracies no matter if CCA is used for optimisation or not. The results also
show the effect of the spatial filter generated by CCA.

The results from the comparison of different methods to construct a spatial
filter are printed in table 2. It shows that constructing the spatial filter based
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on the best individual multichannels gives the highest accuracies with a mean
accuracy of 96.29 %, while the method proposed by Bin et al. achieved an
average accuracy of 92.32 %.

Table 1: Offline classification accuracies to compare OCSVMwith the correlation
approach with and without the use of CCA. Best values are marked bold.

without CCA with CCA
correlation OCSVM correlation OCSVM

AA 84.22 % 85.47 % 99.69 % 99.53 %
AB 37.03 % 47.66 % 87.19 % 87.50 %
AC 83.13 % 87.81 % 99.22 % 99.22 %
AD 35.78 % 43.13 % 75.31 % 83.28 %
AE 77.03 % 83.59 % 93.59 % 94.84 %
AF 98.28 % 99.38 % 100.0 % 100.0 %
AG 11.41 % 15.47% 68.28 % 76.41 %
AH 76.72 % 85.63 % 95.94 % 97.81 %
mean 62.95 % 68.52 % 89.90 % 92.32 %

Table 2: Offline classification results, comparing different methods for construct-
ing a spatial filter. 1: best channel overall 2: method by Bin et al. 3: best channel
individual 4: best multichannels individual. Best results are marked bold.

method 1 2 3 4
AA 99.22 % 99.53 % 99.38 % 99.22 %
AB 70.16 % 87.50 % 87.97 % 95.31 %
AC 98.75 % 99.22 % 98.75 % 98.44 %
AD 81.25 % 83.28 % 81.56 % 94.69 %
AE 97.81 % 94.84 % 97.81 % 97.19 %
AF 99.84 % 100.0 % 99.84 % 99.84 %
AG 41.72 % 76.41 % 83.75 % 86.41 %
AH 97.66 % 97.81 % 97.50 % 99.22 %
mean 85.80 % 92.32 % 93.32 % 96.29 %

3.2 Online proof of concept

During the online test the subject achieved an average accuracy of 92.71 % in
192 trials. Considering the time of a trial with 1.05 s and the break between
two trials of about 0.85 s the subject achieved an average information transfer
rate[7] of 133.6 bit/min.

4 Discussion

In this paper we have proposed the use of a OCSVM as a new method for
classification in a c-VEP BCI and have shown it to increase classification accu-

107

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.



racy compared to the traditional correlation approach. Based on the work of
Bin et al.[4] we also proposed a different method of constructing optimal spatial
filters by the use of CCA, that selects the individual best channels to improve
classification accuracy.

We have shown both methods to work and to increase classification accuracy
in an offline analysis with data from 8 subjects, where we achieved an average
accuracy of 96.29 % for 32 classes. As a proof of concept an online experi-
ment was performed with one subject who achieved an average performance of
133.6 bit/min. To our knowledge this is the highest bitrate ever published for a
non-invasive BCI. Due to the fact that subject AB, who participated in the on-
line experiment, achieved below average results in the offline analysis, we think
that the online experiment is representable and even higher bitrates can be (and
will be) achieved with our system.

In a future study the current system will be tested online with more subjects
and it will be investigated if the proposed system can be enhanced by adaptive
classification, which should reduce the amount of training time needed and result
in a higher and more stable performance. It also needs to be evaluated if the
methods proposed in this paper can also increase performance in other BCIs,
that are based on evoked or event-related potentials.

5 Conclusion

In this paper we have proposed two new methods for a c-VEP BCI and have
shown them to increase performance on offline data. As a proof of concept we
have also shown both methods to work in an online experiment with one subject.

With an average performance of 133.6 bit/min the subject achieved the high-
est bitrate reported to date for any non-invasive BCI system.
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