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Abstract. Model-based clustering for functional data is considered. An

alternative to model-based clustering using the functional principal com-

ponents is proposed by approximating the density of functional random

variables. An EM-like algorithm is used for parameter estimation and the

maximum a posteriori rule provides the clusters. Real data applications

illustrate the interest of the proposed methodology.

1 Introduction

Cluster analysis aims to identify homogeneous groups of data without using
any prior knowledge on the group labels of data. Several methods, from k-
means to probabilistic model-based clustering [1] have been proposed along the
years. A particular type of data for which clustering is a di�cult task is the
functional data (curves or trajectories [2]). The main di�culty in clustering
such data arrises because of the in�nite dimensional space data belong. The
present paper focuses on model-based clustering which, in addition to providing
powerfull clustering algorithm, has interesting interpretability properties. Unlike
in the case of �nite dimensional data vectors, model-based methods for clustering
functional data are not directly available since the notion of probability density
function generally does not exist for such data [3]. Consequently, current use of
model-based clustering methods on functional data consists usually in a �rst step
of transforming the in�nite dimensional problem into a �nite dimensional one
and in a second step using a model-based clustering method designed for �nite
dimensional data. The representation of functions in a �nite dimensional space
can be carried out in several ways: discretizing the time interval, approximating
data into a �nite basis of functions or using some dimension reduction techniques
such as functional principal component analysis (FPCA, [2]). These two-step
approaches perform the dimension reduction and the clustering steps separately,
and this may lead to a loss of discriminative information. Recently, some new
approaches, [4, 5], allow the interaction between the two steps by introducing
a stochastic model for the basis coe�cients. In this paper, we de�ne a new
model for functional data clustering, based on an approximation of the notion
of probability density of a functional random variable.

Let X be a functional random variable with values in L2([0, T ]), T > 0,
and X is a L2-continuous stochastic process, X = {X(t), t ∈ [0, T ]}. Let
X(X1, . . . , Xn) be an i.i.d sample of size n from the same probability distribution
as X. Model-based clustering consists in identifying homogeneous groups of data
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from a mixture densities model. As the notion of probability density is not well
de�ned for functional data, we use a "surrogate density" developped in [3]:

f
(q)
X (x) =

q∏
j=1

fCj (cj(x)), (1)

where fCj
is the probability density function of the principal components Cj =ˆ T

0

(X(t) − µ(t))ψj(t)dt, j ≥ 1. This approximation of the density is based

on the Karhunen-Loeve expansion: X(t) = µ(t) +
∑∞

j=1 Cjψj(t), in which ψj 's
form an orthonormal system of eigen-functions of the covariance operator of

X:
´ T

0
Cov(X(t), X(s))ψj(s)ds = λjψj(t), ∀t ∈ [0, T ]. The eigen-values λj are

assumed to be indexed upon the descending order (λ1 ≥ λ2 ≥ . . .).

2 Model-based clustering for functional data

In the following we suppose that X is a zero-mean gaussian stochastic process.
For each i = 1, . . . , n, let associate to Xi the corresponding categorical variable
Zi indicating the group Xi belongs : Zi = (Zi,1, . . . , Zi,K) ∈ {0, 1}K is such that
Zi,g = 1 if Xi belongs to the cluster g, 1 ≤ g ≤ K, and 0 otherwise.

2.1 The mixture model

Let assume that each couple (Xi, Zi) is an independent realization of the random
vector (X,Z) where X has an approximated density depending on its group
belonging:

f
(qg)
X|Zg=1

(x; Σg) =
qg∏

j=1

fCj |Zg=1
(cj,g(x);σ2

j,g)

where qg is the number of the �rst principal components retained in the ap-
proximation (1) for the group g, cj,g(x) is the jth principal component score of
X|Zg=1 for X = x, fCj |Zg=1

its probability density and Σg the diagonal matrix

diag(σ2
1,g, . . . , σ

2
q,g). Conditionally on the group, the probability density fCj |Zg=1

of the jth principal component of X is assumed to be the univariate gaussian
density with zero mean (the principal component are centered) and variance
σ2

j,g. This assumption is satis�ed when X is a Gaussian process.
The vector Z = (Z1, . . . , ZK) is assumed to have one order multinomial distri-

butionM1(π1, . . . , πK), with π1, . . . , πK the mixing probabilities (
∑K

g=1 πg = 1).
Under this model it follows that the unconditional (approximated) density of X
is given by

f
(q)
X (x; θ) =

K∑
g=1

πg

qg∏
j=1

fCj |Zg=1
(cj,g(x);σ2

j,g) (2)
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where θ = (πg, σ
2
1,g, . . . , σ

2
qg,g)1≤g≤K have to be estimated and q = (q1, . . . , qK)

must be selected. As in the �nite dimensional setting, we de�ne an approximated

likelihood of the sample of curves X by:

l(q)(θ;X) =
n∏

i=1

K∑
g=1

πg

qg∏
j=1

1√
2πσj,g

exp

{
−1

2

(
Ci,j,g

σj,g

)2
}

(3)

where Ci,j,g is the jth principal score of the curve Xi belonging to the group g.

2.2 Parameter estimation

In the unsupervised context the estimation of the mixture model parameters is
not as straightforward as in the supervised context since the groups lables Zi

are unknown. A classical way to maximise a mixture model likelihood when
data are missing (here the clusters indicators Zi) is to use the iterative EM
algorithm [6]. In this work we use an EM-like algorithm including, between the
standard E and M steps, a step in which the principal components scores of
each group are updated and onther one in which the group speci�c dimension qg
are selected. Our EM-like algorithm consists in maximizing the approximated
completed log-likelihood

L(q)
c (θ;X,Z) =

n∑
i=1

K∑
g=1

Zi,g

log πg +
qg∑

j=1

log fCj |Zg=1
(Ci,j,g)

 ,

which is known to be easier to maximise than its incomplete version (3), and
leads to the same estimate. Let θ(h) be the current value of the estimated pa-
rameter at step h, h ≥ 1.
E step. As the groups indicators Zi,g's are unknown, the E step consists in com-
puting the conditional expectation of the approximated completed log-likelihood:

Q(θ; θ(h)) = Eθ(h) [L
(q)
c (θ; X, Z)|X = x] =

n
X

i=1

K
X

g=1

ti,g

 

log πg +

qg
X

j=1

log fCj |Zg=1
(ci,j,g)

!

where ti,g is the probability for the curve Xi to belong to the group g condi-
tionally to Ci,j,g = ci,j,g:

ti,g = Eθ(h) [Zi,g|X = x] '
πg

∏qg

j=1 fCj |Zi,g=1
(ci,j,g)∑K

l=1 πl

∏ql

j=1 fCj |Zi,l=1
(ci,j,l)

. (4)

The approximation in (4) is due to the use of an approximation of the density
of X.
Principal score update step. The computation of FPCA eigenfunctions and scores
within a given cluster follows [2]. In general, this computation needs some ap-
proximation. The most usual one is to assume that the curve admits an expan-
sion into a basis of functions φ = (φ1, . . . , φL). Let Γ be the n × L expansion
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coe�cients matrix and W =
´
φφ′ be the matrix of the inner products between

the basis functions. Here, the computation of the principal component scores
Ci,j,g of the curve Xi in the group g is updated depending of the current condi-
tional probability ti,g computed in the previous E step. This computation is car-
ried out by ponderating the importance of each curve in the construction of the
principal components with the conditional probabilities Tg = diag(t1,g, . . . , tn,g).
Consequently, the �rst step consists in centering the curve Xi within the group
g by substraction of the mean curve computed using the ti,g's. The principal
component scores are then given by Ci,j,g = (λj,g)−1/2γiWβj,g where γi is the
ith row of Γ, βj,g = W−1/2uj,g, uj,g and λj,g being the jth eigenvector and
respectively eigenvalue of the matrix n−1W 1/2Γ′TgΓW 1/2.
Group speci�c dimension qg estimation step. The estimation of the group spe-
ci�c dimension qg is an open problem. In this work we propose to use, once
the group speci�c FPCA have been computed, classical empirical criteria as the
proportion of the explained variance.
M step. The M step consists in computing the mixture model parameters
θ(h+1) which maximizes Q(θ; θ(h)). It leads simply to the following estimators

π
(h+1)
g = 1

n

∑n
i=1 ti,g and σ2

j,g
(h+1) = λj,g, for 1 ≤ j ≤ qg where λj,g is the

variance of the jth principal component of the cluster g already computed in the
principal score update step.
Numerical considerations. In order to avoid the convergence to a local minimum,
our EM-like algorithm is launched 20 times with a small number of iterations
(20), and the best solution is used for initializing a larger algorithm, in which
the convergence is �xed to a growth in the likelihood lower than 10−6 with a
maximum number of 1000 iterations.

3 Numerical experiments

Kneading data. This application consists in clustering Danone kneading curves.
This dataset comes from Danone Vitapole Paris Research Center and concerns
the quality of cookies and the relationship with the �our kneading process. The
kneading data set is described in detail in [7]. There are 115 di�erent �ours for
which the dought resistance is measured during the kneading process for 480
seconds. One obtains 115 kneading curves observed at 241 equispaced instants
of time in the interval [0, 480]. The 115 �ours produce cookies of di�erent qual-
ity: 50 of them have produced cookies of good quality, 25 produced adjustable

quality and 40 bad quality.
ECG data. This public dataset is taken from the UCR Time Series Classi�ca-

tion and Clustering website1. It consists of 200 curves from 2 groups sampled at
96 time instants (refer to [8] for more details). The Figure 1 plots both datasets.

Results. The accuracy of our model, called funclust in the following, is illustrated
with respect to usual clustering methods: HDDC [9], MixtPPCA [10], k-means,
Gaussian Mixture Model (GMM [1]) and hierarchical clustering (hclust). All

1http://www.cs.ucr.edu/∼eamonn/time_series_data/
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Fig. 1: Kneading data (115 �ours observed during 480 seconds) and ECG data
(200 curves at 96 time instants).

these methods are successively applied on the discretized data, on the expansion
coe�cients in a cubic B-spline basis and on the FPCA scores. For funclust and
the FPCA discretization, the number of dimensions is selected such that at least
95% of the total variance was explained. In order to compare these di�erent
clustering procedures, the known class memberships of the data are hidden, a
clustering in respectively 3 and 2 groups is performed, and the classi�cations
obtained are then compared to the real (hidden) ones. This is a current way to
analyse unsupervised procedures performance.

The clustering results (Table 1) are obtained in about 15 seconds for the
ECG dataset and 90 seconds for the Kneading one, on an usual laptop and
with a code in R software. Our method funclust performs better, on these
two datasets, than fun-HDDC [5] which similarly to funclust considers group
speci�c subspaces but assume a Gaussian mixture model on the coe�cients of
the eigen-function expansion, and not on the principal score as funclust. The
methods from the multivariate �nite setting are also outperformed by funclust

for the Kneading dataset. For the ECG dataset, only GMM applied on the
FPCA scores is slightly better. Nevertheless, for these two step methods, there
is no way to choose between the three discretization techniques, and for the
ECG dataset, GMM applied on for the two other discretization techniques is not
better (according to the clustering accuracy) than funclust.

2-steps discretized spline coe�. FPCA scores functional

methods (241 instants) (20 splines) (4 components) methods

HDDC 66.09 74.5 53.91 73.5 44.35 74.5 fun-HDDC2 62.61 75

MixtPPCA 65.22 74.5 64.35 73.5 62.61 74.5 funclust 67.82 81

GMM 63.48 81 50.43 80.5 60 81.5

k-means 62.61 74.5 62.61 72.5 62.61 74.5

hclust 63.48 73 63.48 76.5 63.48 64

Table 1: Percentage of correct classi�cation for the Kneading dataset (left) and
ECG dataset (right)
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4 Conclusion

In this paper we propose a clustering procedure for functional data based on
an approximation of the notion of density of a random function. The main
tool is the use of the probability densities of the principal components scores.
Assuming that the functional data are sample of a Gaussian process, the resulting
mixture model is an extrapolation of the �nite dimensional Gaussian mixture
model to the in�nite dimensional setting. We de�ned an EM-like algorithm
for the parameter estimation and performed two applications on real data, in
order to show the performance of this approach with respect to other clustering
procedures.
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