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Abstract. Linear mappings are omnipresent in data processing analy-
sis ranging from regression to distance metric learning. The interpreta-
tion of coefficients from under-determined mappings raises an unexpected
challenge when the original modeling goal does not impose regularization.
Therefore, a general posterior regularization strategy is presented for in-
ducing unique results, and additional sensitivity analysis enables attribute
assessment for facilitating model interpretation. An application to infrared
spectra reflects data smoothness and indicates improved generalization.

1 Introduction

While the machine learning community heads for scientific contributions refer-
ring to the power of non-linear models, the engineering community, for example,
tends to prefer the simplicity and interpretability of linear or linearized models.
Certainly, linear mappings allow the structurally simplest way to consider each
attribute in a transformation of vector data. Several standard tools like prin-
cipal component analysis, independent component analysis, linear discriminant
analysis, or partial least squares regression show that linear approaches have
a respectable modeling power [1]. However, whole books on factor analysis [4]
indicate that the interpretation of mapping coefficients is often an intriguing
challenge. For example, rotational transformation contributions of coefficients
do not influence to, but obfuscate, the goal of separating class projections.

During the last decade, linear distance metric learning has become an area of
active research. In neighborhood component analysis and large margin nearest
neighbor classification label information is used to tune linear mappings for
enhancing class discrimination of transformed data [3]. Learning data prototypes
and their metric simultaneously for given data is realized in matrix learning
vector quantization [8], and correlative matrix mapping seeks linear subspaces for
optimum multivariate regression between distance spaces [9]. Also, unsupervised
adaptive distance metric learning exist for optimizing clusterability [12]. Only
few approaches provide norm-reducing parameter regularization [5], because of
the conflict between minimum null vectors and highly structured solutions.

Each above-mentioned model is driven by linear mapping operations, being
implicitly involved in cases of matrix metric learners. In the following we refer
to sources of linear mappings as external models. Using only coefficient matrices
and source data, the aim of this work is to provide a better understanding of
the given mappings by applying regularization, standardization, and assessment
of the data attributes independently of the original mapping methods.
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2 Methods

Three steps are proposed to analyze a given mapping. The first step aims at a re-
construction of the given linear mapping by a regularized one. This can be inter-
preted as posterior application of Tikhonov regularization (ridge regression) and
is related to the least absolute shrinkage and selection operator (LASSO) [10].
The second step of rotation standardization is recommended in cases where ro-
tation does not play a role, such as for classification of projected samples. The
final step involves attribute assessment for posterior analysis of linear mappings.

2.1 Posterior regularization of under-determined linear mappings

Let N input vectors be given as rows xj ∈ X ⊂ RM , xj = (xjk)1≤k≤M , 1 ≤ j ≤ N ,
and let ω ∈ RM×u be a matrix with M rows corresponding to the number of
data attributes, and with u columns ωk, 1 ≤ k ≤ M , corresponding to the
dimension of the linear mapping defined by p = X ·ω. For fewer sample vectors
than data attributes, i.e. for N < M , this under-determined system with target
p allows many different, yet, equivalent mapping solutions for ω.

If parameters ω are free to be positive or negative, a unique matrix ω∗ is
sought with p = X · ω∗ = X · ω such that its squared Frobenius norm ‖ω∗‖2F is
minimum. A formulation of this constraint optimization problem with Lagrange
multiplier λ is provided separately for each column υ = ωk as [2]

L (υ∗, λ) =
M∑
l=1

(υ∗
l )

2
+ λ · α ·

N∑
j=1

(
xj · (υ − υ∗)

)2
. (1)

Contrary to LASSO shrinkage, putting the Lagrange constraint on the mapping
reconstruction rather than on the norm of the coefficient vector allows expand-
ing an initial null vector υ∗ until the mapping constraints get fulfilled. The
constraint weight α helps during optimization for compensating very different
contributions of norm and constraint terms. Saddle points of L are found by
unconstrained minimization of the squared norm of its (M + 1)-dimensional
gradient L = (∂L /∂υ∗, ∂L /∂λ):

L(υ∗, λ) =
(

2 · υ∗ − 2 · λ · α · X
T

·
(
X · (υ − υ∗)

)
, α ·

N∑
j=1

(
xj · (υ − υ∗)

)2)
. (2)

The partial derivatives of G(υ∗, λ) = |L|22 for gradient-based optimization are:

∂G(υ∗,λ)
∂υ∗ = 4 ·

(
∂L
∂υ∗ + λ · α ·X

T

·
(
X · ∂L

∂υ∗

)
− ∂L

∂λ ·U
)
, (3)

∂G(υ∗,λ)
∂λ = −4 ·U

T

· ∂L
∂υ∗ with U = α · X

T

·
(
X · (υ − υ∗)

)
. (4)

Formally dispensable parentheses are added for improved computational effi-
ciency. For optimization the quasi Newton Broyden-Fletcher-Goldfarb-Shanno
method was initialized by a vector υ∗ of zeros and λ = 0 and run to the mini-
mum length of gradient G. An empiric scaling factor of 10 of the default value
of α = M can be used for putting more emphasis on either the accuracy of the
mapping reconstruction (larger α) or on the minimum norm of ω∗ (smaller α).

68

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.



2.2 Standardization of mapping coefficient vectors

Distance metric learning refers to finding a matrix Ω such that a given crite-
rion, like class discrimination or regression, is optimized for the mapped data
relationships defined by

dijp,Ω = dp,Ω(xi,xj) =
(

(xi − xj) ·Ω · (xi − xj)
T
)p
, p > 0. (5)

Metrics are obtained for positive semi-definite matrices Ω, which is always the

case for Ω = ω ·ωT

, allowing unconstrained optimization of matrix ω. The two
most common choices in Equation 5 are p = 1 for quadratic forms and p = 1

2 for
natural ’Mahalanobis’ types of distances.

Since external mapping targets, such as the clustering of data in the mapped
subspace, are invariant under rotations of Ω, a projection of ω to the eigenvectors
of Ω helps to standardize the appearance of the columns of ω [8]. Standardized
directions are achieved by mirroring heavier tails of the eigenvector-rotated coef-
ficient distributions into the positive half-space. This standardization of ω does
not change Ω, hence, all pairwise distances of mapped data remain unaffected.

2.3 Assessment of data attribute contributions to linear mappings

Although it is tempting to rate large absolute values of linear mapping coef-
ficients as ’important’, their proper interpretation is complicated by several
aspects. For example, if correlated attributes exist in a data set, positively
weighted ones can be compensated by their negative-weighted correlates. Also, in
class separation tasks, two attributes might possess equal discriminative power,
but at different variance levels, yet, the magnitude of coefficient weightings will
be inversely related to variance. Sensitivity-based assessment is thus proposed.

Given vectors xi and xj , contributions of Ω and ω to the metric (5) are:

∂dij
p,Ω

∂Ω = p · (xi − xj)
T

· (xi − xj) · (dijp,Ω)(p−1)/p , (6)

∂dij
p,Ω

∂ω = 2 · p ·
(
(xi − xj) · ω

)T
· (xi − xj) · (dijp,Ω)(p−1)/p . (7)

Data vector relationships are encoded in their distance matrix, thus, the
overall parameter contribution matrices depend on all involved data pairs:

V p,Ω =
N∑
i=1

N∑
j=1

∂dijp,Ω
∂Ω

and V p,ω =
N∑
i=1

N∑
j=1

∂dijp,Ω
∂ω

. (8)

Note that usual quadratic forms related to p = 1 yield V 1,Ω = (N2−N) ·cov(X),
that is, the total derivative V 1,Ω is only depending on the covariance of the
data, not on the mapping defined by Ω. Involvement of parameters is captured
in V p,ω , particularly, V 1

2 ,ω
allows to assess the contribution of linear mapping

coefficients ω to relationships in Euclidean subspaces.
External models for computing the matrix ω are likely to induce mostly non-

vanishing derivatives resulting from Equation 7, and it might seem attractive to
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use the column sums of squares of V p,ω as an indicator of attribute importance.
This measure is not very specific to the linear mapping though. In fact, all
coefficient matrices that provide identical distance matrices of the projections

yield identical V p,ω , because different Ω1 = ω1 ·ω1
T

and Ω2 = ω2 ·ω2
T

lead to

(xi − xj) · ω1 = (xi − xj) · ω2 [Eqn. 5] →
∂dij

p,Ω1

∂ω1
=

∂dij
p,Ω2

∂ω2
[Eqn. 7]. (9)

Therefore, a mapping-specific attribute assessment strategy is proposed.
By setting entries in row l of the mapping matrix to zero, the l-th data at-

tributes are projected to zero and, therefore, ignored in calculations of distances
in the mapped data. The gradient V l−

p,ω related to each such hold-out attribute
is used for calculating its difference to the original gradient V p,ω . Finally, the
Frobenius norm of this gradient difference matrix, again ignoring formally aban-
doned contributions of row l, is assigned as sensitivity to the l-th attribute:

sl = ‖ [V p,ω − V l−
p,ω ]l− ‖F . (10)

This differential view identifies parameters that yield distance distortion due to
attribute hold-out compared to the original mapping.

The proposed strategy does not require a retraining of external models. Be-
sides adding computing time, the alternative of retraining with a discarded at-
tribute might lead to a phase transition in their cost function, and hence, to
a completely different configuration with drastically changed contributions of
the remaining attributes. As another benefit, the proposed way is expected to
provide consistent results without even requiring access to external models.

3 Results

Wine sample spectra mappings are analyzed related to mid-infrared range scans
at 256 contiguous wave numbers [11]. The mapping goal was the prediction of
given alcohol concentrations. According to the work of [6] the spectra 34, 35 and
84 were considered as outliers and therefore discarded. The training and test
sets contain 94 and 30 spectra, respectively, creating thus an under-determined
regression problem which is considered as being solved by external models. No-
tice that the goodness of those models is subordinate to their interpretation here.

First, a least squares regression mapping is taken from Moore-Penrose pseu-
doinverse of the data matrix. The Pearson correlation between the predicted
labels and the true labels is at maximum of 1 for the training data and of 0.990
for the 30 test samples. After application of the proposed regularization, the
training set correlation decreased slightly to 0.999 while increasing to 0.995 for
the test data. Corresponding mapping coefficients are shown in the top row of
Figure 1, indicating a drastic difference between the very fluctuating raw coeffi-
cients (left) and the regularized ones with coherent spectral ranges (center).

Second, for further illustration coefficient vectors from correlative matrix
mapping (CMM) to a 2-dimensional subspace are regularized and standardized,
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Fig. 1: Regularization and attribute assessment for 256-dimensional spectral data of wine
samples linearly associated with alcohol content. Left: Raw mapping coefficient vectors from
external methods with numbers indicating squared `2 norms. Top, Moore-Penrose pseudoin-
verse (MP). Bottom, 2-dimensional CMM regression subspace with mapping coefficient vectors
in black and gray. Center: regularized coefficients, reflecting coherence of spectral channels
of original dataset (not shown). Top, MP results. Bottom, CMM with regularized coeffi-
cients rotated on their eigenvectors. Right: Attribute relevance assessment based on ranks
of differential sensitivity analysis (black lines) and on inverse ranks of mapping quality being
integrated over all neighbor sizes [7] (gray lines, offset by 256). Higher ranks are more relevant.

shown in the bottom row of Figure 1. Two-banded fluctuations and similar am-
plitudes of both vectors in the left get coherent and separated into a high and
low amplitude vector in the center plot. By definition of the involved operations,
pairwise distances of mapped points are not affected despite strong changes of the
mapping coefficient vectors. Regularized views even allow to detect similarities
between CMM and Moore-Penrose solutions in the center column of Figure 1.
According to the regularization target, values of coefficient vector norm drop
from the left to the center column.

Third, attribute sensitivities are provided as ranks (higher is more impor-
tant) in the right column of Figure 1 for the regularized Moore-Penrose and
CMM mappings. A certain agreement between the two corresponding black
lines can be observed at different degrees of fluctuation. For reference, results
from a completely different method are included as gray lines, involving neigh-
borhood ranks of projections for assessing the quality of mappings [7]. Excellent
agreement at Spearman rank correlation values above 0.95 indicate very consis-
tent attribute rankings between the methods for both cases, but the proposed
way is computationally less demanding by a rough factor of O(n · log n), because
method-inherent derivatives can be used instead of overall neighborhood ranking
based on sorting operations.
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4 Conclusions

As exemplarily shown for a spectral data base, posterior norm-based regulariza-
tion of under-determined linear mappings enables recovery of contiguous map-
ping coefficients representing smooth frequency ranges by using only the data and
the original coefficients. The proposed regularization method resembles compres-
sive sensing, but for computational tractability it currently makes use of `2 rather
than `1 norm minimization. Original distance relationships in the mapping space
are preserved after regularization. Rotation standardization helps to resolve fur-
ther ambiguities. Finally, attribute hold-out for distance derivatives highlights
data attributes which are most influential to the mapping. Software demonstrat-
ing improved generalization for additional examples from another food spectral
database and from a colon cancer diagnosis task based on gene expression data
is available as MATLAB/GNU-Octave package ’RegLin’ at https://mloss.org/.
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