
A Discrete/Rhythmic Pattern Generating RNN

Tim Waegeman, Francis Wyffels and Benjamin Schrauwen

Department of Electronics and Information Systems, Ghent University
Sint Pietersnieuwstraat 41, B9000 Ghent, Belgium

Abstract. Biological research supports the concept that advanced mo-
tion emerges from modular building blocks, which generate both rhyth-
mical and discrete patterns. Inspired by these ideas, roboticists try to
implement such building blocks using different techniques. In this paper,
we show how to build such module by using a recurrent neural network
(RNN) to encapsulate both discrete and rhythmical motion patterns into
a single network. We evaluate the proposed system on a planar robotic
manipulator. For training, we record several handwriting motions by back
driving the robot manipulator. Finally, we demonstrate the ability to learn
multiple motions (even discrete and rhythmic) and evaluate the pattern
generation robustness in the presence of perturbations.

1 Introduction

Animals and humans have the ability to interact with their environment in a
skillful and graceful, sometimes referred to as natural, manner. For several mil-
lennia, mankind tried to replicate such natural behavior in the design of robots
to reduce the need for human labor, typically repetitive tasks that requires pre-
cision. However, as human-robot interaction became increasingly important, the
need of more advanced motor skills emerged. More recently, researcher are using
biologically inspired techniques to enhance the motion skills of robots. One of
these approaches [4] is based on the study of the locomotion of a lamprey [3].
Researchers found groups of neurons, the so called “Central Pattern Generator”
(CPG) located in the spinal cord, which is mainly responsible for the rhythmic
locomotion of the lamprey. Other biological research on humans and animals
has shown that a wide variety of continuous and discrete motions can be rep-
resented by a limited number of discrete motion primitives. For instance, in [1]
a factorization algorithm was employed to extract a small amount of invariant
spatio temporal relationships, called “synergies”, among muscle activations of
animals. Such research indicates that a limited repertoire of discrete primitives
is responsible for the advanced motion skills of humans and animals. These find-
ings support the concept of a modularly organized motor control [2], inspiring
the implementation of such motion primitives for robotic applications. In [5]
discrete or rhythmic motions were learned by shaping the attractor landscape of
a nonlinear differential equation with statistical learning methods. Another ap-
proach uses a learning method to estimate the parameters of a Gaussian Mixture
Model to model discrete motions [8]. However, a representation of both rhyth-
mic and discrete motions in a single trained system is not realized. In this work
we propose a technique to embed both rhythmic and discrete motion patterns

567

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

into a single attractor landscape formed by a RNN. Similar as in [11], we will
use a fast training technique for large RNNs unified as “Reservoir Computing”
(RC) [10] together with similar training approaches.

2 Discrete and Rhythmic Pattern Generator

The key idea behind the proposed system is to use the dynamics of a RNN
to embed the desired attractors which is a limit cycle attractor for rhythmic
motions (e.g.: walking) and/or a fixed point attractor for discrete motions (e.g.:
reaching). In this work, Reservoir Computing (RC) [10] is used to efficiently
train such a RNN which follows the Echo State Network (ESN) approach [6].
An ESN is composed of an input, a discrete-time RNN (i.e., the reservoir) and a
linear readout output layer which maps the reservoir states to the desired output.
Additionally, in this work, the system output is fed back to the reservoir. The
system’s dynamics are represented by the following equations:

x[k + 1] = (1 − γ)x[k] + γ tanh (Wr
rx[k] + Wr

oy[k] + Wr
iu[k]) (1)

y[k + 1] = Wo
rx[k + 1], (2)

where x[k] represents the reservoir states with x[0] = 0. u[k] and y[k] represent
respectively the input and output. The term γ is called the leak rate which can
effectively tune the system’s dynamics [7]. The weight matrices W∆

∗ represent
the connections from ∗ to ∆ between the nodes of the network (where r, i and
o denote reservoir, input and output, respectively). All weight matrices Wr

∗ to
the reservoir are initialized randomly (drawn from N (0, 1)), while all connections
to the output Wo

∗ are trained using standard linear regression techniques. After
initialization, Wr

r is normalized by dividing it with its largest absolute eigenvalue
(spectral radius). The spectral radius is typically tuned close to 1, such that
the network operates at the edge of chaos where its computational power is
greatest [9]. The RC-network in this work has 2 outputs because we are using 2
dimensional motions. The output is fed back to the reservoir. To allow switching
between rhythmic and discrete motion patterns, or multiple patterns in general,
the input u[k] is set to an arbitrarily chosen value, different for each motion.

During training, the output y[k] in equation (1) is set to the desired output
yd[k]. By calculating and collecting subsequently each state according to equa-
tion (1) with a defined input (u[k]), the output weights Wo

r can be determined
in one shot by applying linear regression [6]:

Wo
r = (XT X + ρI)−1XTT, (3)

where X consists of all reservoir states x[k]. Matrix T contains all desired
outputs yd[k]. To improve generalization capabilities and to prevent overfitting
of the data, ridge regression is used [12], introducing the regularization parameter
ρ in equation (3). This parameter is optimized using 4-fold cross-validation.

Rhythmic pattern generation in the context of a CPG was investigated in [11].
In our approach the training of rhythmic patterns is achieved in a similar manner.

568

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

Rhythmic motion

Discrete motion

Begin new example (reinitialize states)
Padding with last value of example

(a)

1

2

3

l1

l2

l3

Y

X

(b)

Fig. 1: (a) Illustration of how the training data is composed. Different exam-
ples of the same motion are shown for both rhythmic and discrete patterns.
The dashed line indicates the moment at which the reservoir states are reinitial-
ized. (b) Schematic representation of the planar manipulator together with the
associated angles θ i and link lengths l1 = l2 = 9.15 cm and l3 = 3.5 cm.

However, to allow the training of different examples of a rhythmic motion we
reinitialize the reservoir states after each example (Containing multiple periods)
(x[ke] = 0 with ke the first time step of a new example).

When training a discrete motion, after each example a random sized padding
of its last example value is added. By applying this padding, the output weights
of the RC-network are also trained on the transients of the writing motions to
their fixed target positions. Similar as with rhythmic motions, the reservoir
states are reinitialized at the beginning of an example after the padding of the
previous example. This process is illustrated at the bottom of Fig. 1(a).

If the generation of different writing motions is needed, the used training
data of one motion should not overlap in the 2D-plane with the training data
of the others. Which motion pattern is generated is then determined by the
initial position in the 2D plane where the network is initialized with. However,
when including a different input u[k] for a different pattern during training, the
pattern which is generated is determined by this input. We will demonstrate the
latter in the following section.

3 Robotic Application

In order to evaluate the proposed pattern generator, we train it to reproduce
letter writing motions with a planar manipulator (Fig. 1(b)). Here, the manipu-
lator with 3 rotational joints is not just blindly commanded to follow a trajectory
but is included in the control loop. Several examples of letter writing motions are
recorded by moving the servos manually and reading the corresponding encoder
values. After training, by initializing the feedback with a start position, it will
generate the next trajectory position. Subsequently, this position is transformed
to an angular position by applying inverse kinematics, which is used to control
the manipulator. In turn, the encoder values are read and used as feedback to

569

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

the RC-network after applying forward kinematics. During training, each letter
was shown 6 times with different starting points but with the same target point.

In this paper, we show examples of the letter R, which contains intersecting
points, to demonstrate the need of memory in the generation of some discrete
motions. At such an intersecting point, knowledge about the previous positions
is necessary to allow successful completion of the motion. Generating such mo-
tions with a simple memoryless mapping from one position to the other would
be impossible. To present the ability to learn rhythmic motions we used 6 “ex-
amples” of a figure-8, not by back driving the robot but by using the following
equation: x = 13 + 3 cos(ψ), y = −5 + 3 sin(2ψ) with ψ ∈ [π

2 , 10π]. Because
each “example” is the same, the need for state reinitialization can be omitted
when only rhythmic pattern generation is required. A rhythmic motion like the
figure-8 also requires a certain amount of memory because of its intersection in
the 2D-plane and because of the non monotonicity in each dimension.

For all experiments, we chose a reservoir size of 400 neurons. The leak rate γ
was hand tuned to 0.3. We used a spectral radius of 0.99 (described in Section 2).
The connection weights of the input and output to the reservoir, respectively
Wr

i and Wr
o, are scaled by a hand tuned scaling factor of 0.1. These parameters

could be optimized by applying grid search. However, the hand tuned parameters
were sufficient to demonstrate the capabilities of each RC-network.

We demonstrate1 the training of multiple motions by generating both a
rhythmic and a discrete motion pattern. This is shown in Fig. 2(a), where the
input is set to −1 (arbitrarily chosen, trained to generate a discrete motion) and
the feedback to the reservoir is initialized with a chosen position (0, 20). After
generating the desired discrete pattern, the fixed point attractor is reached. The
network stays in this attractor as long as the network input stays unchanged.
However, when the network input (indicated by the dashed line in the bottom
plot) is switched from −1 to 1, the network reaches its limit cycle attractor
after some transient behavior, and stays on its limit cycle attractor during an
unchanged input. When the input is changed from 1 to −1 the fixed point at-
tractor will be reached again by generating a discrete pattern. Interestingly, due
to symmetry in the network, the generated discrete pattern is a rotated version
of the trained one. By adding bias to the reservoir this symmetry is removed.
The velocity of the motions depends on the velocity of the training examples.
However, the transients between these patterns are unpredictable.

To investigate the robustness of a trained RC-network we perturb the output
feedback during 10 time steps by holding the x-coordinate fixed and pulling the
y-coordinate to another position. This is shown in Fig. 2(b).

For the discrete motion, two perturbations where introduced for respectively
two generation attempts (one illustrated by a gray line, the other by a black
one). A perturbation was introduced at time step 30 and 80 for the gray and
black pattern, respectively. These plots demonstrate that the motion generation
is robust and that after some transient behavior, the target position is reached
after all. Afterwards, we notice that the system is staying in its fixed point

1http://www.youtube.com/watch?v=WnmHdS38Ae0

570

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

10 8 6 4 2 0 2 4 6 8 10
15

10

5

0

5

10

15

20

X [cm]

Y
[c

m
]

100 200 300 400 500 600 700 800 900 1000 1100 1200
10

0

10

X
[c

m
]

100 200 300 400 500 600 700 800 900 1000 1100 1200
20

0

20

Y
[c

m
]

time step

(a)

0 2 4 6 8 10

0

5

10

15

X [cm]

Y
[c

m
]

50 100 150 200 250 300
0

5

10

X
[c

m
]

50 100 150 200 250 300

0

10

20

Y
[c

m
]

time step

0 2 4 6 8
10

8

6

4

2

0

X [cm]

Y
[c

m
]

200 400 600
0

5

10

X
[c

m
]

200 400 600
10

5

0

Y
[c

m
]

time step

(b)

Fig. 2: (a) Plots demonstrating the switching capability. The dashed line in the
bottom two plots illustrates the switching moment, set by changing the network
input. The transients between these patterns are shown in a lighter gray color
while the patterns are shown in darker gray. (b) Plots illustrate the robustness
against perturbations (indicated by the triangles). For the discrete pattern, 2
generation attempts of the letter R are shown (in black and gray) with a different
perturbation. For the rhythmic motion, 4 perturbations were applied. After each
perturbation the color is changed to a different intensity of gray.

attractor for as long as the experiments takes (300 time steps).
For the evaluation of rhythmic motion generation, we perturb the motion at

different time steps (time steps 100, 338, 516 and 690). The perturbation fre-
quency is small enough to allow convergence to its limit cycle attractor between
two perturbations. To illustrate the transient motions, a different color is used
between two perturbations. We notice that, after some transient behavior, the
system converges back to its limit cycle attractor. Additionally, because of this
limit cycle attractor, the rhythmic motion will continue until the experiment
stops (600 time steps).

4 Conclusion

Biological research indicates that advanced motor skills emerge from the com-
bination of a limited amount of motion/motor primitives, which can be discrete
or rhythmic patterns. Inspired by these findings, roboticists try to implement
a similar modular representation to enhance the motor skills of robots. Such
modules need to be capable of generating both discrete and rhythmic patterns.
Discrete patterns have typically a fixed point attractor while rhythmic patterns
are represented by a limit cycle attractor.

In this work we embedded such attractors into a recurrent neural network
which is trained by a Reservoir Computing (RC) approach. We demonstrated
the ability to learn both a discrete and rhythmic pattern in a single recurrent

571

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

neural network. The proposed system was trained to generate letter writing
motions and a rhythmic figure-8 which were evaluated and demonstrated on a
planar robotic manipulator with 3 rotational joints. Furthermore, we showed the
possibility to switch between both pattern types by changing the input to the
network. Additionally, the robustness of the pattern generation was investigated
by perturbing the feedback to the network for several time steps.

The velocity of the generated patterns is similar to the velocity of the shown
training examples. The velocity of the transient behavior between discrete and
rhythmic patterns is unpredictable which is undesirable in some robotic appli-
cations. Therefore we will investigate the velocity modulation of this transient
behavior in future work. Furthermore, we will investigate how human motion
patterns can be mapped on patterns for robots and how to sequence such pat-
terns to finally generate advanced motor skills.

5 Acknowledgments

This work was partially funded by a Ph.D. grant of the Institute for the Promo-
tion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen)
and the FP7 funded AMARSi EU project under grant agreement FP7-248311.

References

[1] A. d’Avella, A. Portone, L. Fernandez, and F. Lacquaniti. Control of fast-reaching move-
ments by muscle synergy combinations. The Journal of neuroscience, 26(30):7791, 2006.

[2] T. Flash and B. Hochner. Motor primitives in vertebrates and invertebrates. Current
Opinion in Neurobiology, 15(6):660–666, 2005.

[3] S. Grillner and P. Wallen. Cellular bases of a vertebrate locomotor systemá-ásteering,
intersegmental and segmental co-ordination and sensory control. Brain research reviews,
40(1-3):92–106, 2002.

[4] A.J. Ijspeert, A. Crespi, D. Ryczko, and J.M. Cabelguen. From swimming to walking
with a salamander robot driven by a spinal cord model. Science, 315(5817):1416, 2007.

[5] A.J. Ijspeert, J. Nakanishi, and S. Schaal. Learning Attractor Landscapes for Learning
Motor Primitives. In NIPS, pages 1523–1530, 2002.

[6] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: predicting chaotic systems
and saving energy in wireless telecommunication. Science, 308:78–80, April 2 2004.

[7] Herbert Jaeger, Mantas Lukosevicius, and Dan Popovici. Optimization and applications
of echo state networks with leaky integrator neurons. Neural Networks, 20:335–352, 2007.

[8] S.M. Khansari-Zadeh and A. Billard. Imitation learning of globally stable non-linear
point-to-point robot motions using nonlinear programming. In Int. Conf. on Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ, pages 2676–2683. IEEE, 2010.

[9] R. Legenstein and W. Maass. Edge of chaos and prediction of computational performance
for neural circuit models. Neural Networks, 20(3):323–334, 2007.

[10] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. An experimental unifi-
cation of reservoir computing methods. Neural Networks, 20:391–403, 2007.

[11] F. Wyffels and B. Schrauwen. Design of a central pattern generator using reservoir
computing for learning human motion. Advanced Technologies for Enhanced Quality of
Life, pages 118–122, 2009.

[12] F. Wyffels, B. Schrauwen, and D. Stroobandt. Stable output feedback in reservoir com-
puting using ridge regression. In Int. Conf. on Analog Neural Networks (ICANN), 2008.

572

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

